Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma

Acceleration in a plasma wake field is simulated with 2D axially symmetric hybrid PIC code. The dependence of the parameters of the accelerated electrons on the laser pulse duration (at a given pulse energy) is studied and the range of pulse duration values for efficient electron acceleration is f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Kostyukov, I.Yu., Vvedenskii, N.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/78769
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma / I.Yu. Kostyukov, N.V. Vvedenskii // Вопросы атомной науки и техники. — 2006. — № 2. — С. 70-72. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78769
record_format dspace
spelling irk-123456789-787692015-03-21T03:02:02Z Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma Kostyukov, I.Yu. Vvedenskii, N.V. Линейные ускорители заряженных частиц Acceleration in a plasma wake field is simulated with 2D axially symmetric hybrid PIC code. The dependence of the parameters of the accelerated electrons on the laser pulse duration (at a given pulse energy) is studied and the range of pulse duration values for efficient electron acceleration is found. В настоящей работе процессы ускорения электронов в кильватерной волне моделируются с помощью двумерного аксиально-симметричного гибридного численного кода, использующего метод частиц в ячейках. На основании проведенных численных расчетов определены зависимости параметров ускоренных электронов от длительности лазерного импульса (при заданной его энергии) и найдены области оптимальных значений длительности импульса, отвечающие наиболее эффективной генерации ускоренных электронов. У дійсній роботі процеси прискорення електронів у кільватерній хвилі моделюються за допомогою двовимірного аксіально-симетричного гібридного чисельного коду, що використає метод часток в осередках. На підставі проведених чисельних розрахунків визначені залежності параметрів прискорених електронів від тривалості лазерного імпульсу (при заданій його енергії) і знайдені області оптимальних значень тривалості імпульсу, що відповідають найбільш ефективної генерації прискорених електронів. 2006 Article Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma / I.Yu. Kostyukov, N.V. Vvedenskii // Вопросы атомной науки и техники. — 2006. — № 2. — С. 70-72. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 41.60.Ap, 52.40.Mj http://dspace.nbuv.gov.ua/handle/123456789/78769 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
spellingShingle Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
Kostyukov, I.Yu.
Vvedenskii, N.V.
Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma
Вопросы атомной науки и техники
description Acceleration in a plasma wake field is simulated with 2D axially symmetric hybrid PIC code. The dependence of the parameters of the accelerated electrons on the laser pulse duration (at a given pulse energy) is studied and the range of pulse duration values for efficient electron acceleration is found.
format Article
author Kostyukov, I.Yu.
Vvedenskii, N.V.
author_facet Kostyukov, I.Yu.
Vvedenskii, N.V.
author_sort Kostyukov, I.Yu.
title Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma
title_short Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma
title_full Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma
title_fullStr Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma
title_full_unstemmed Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma
title_sort pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Линейные ускорители заряженных частиц
url http://dspace.nbuv.gov.ua/handle/123456789/78769
citation_txt Pic simulation of electron acceleration in a wake field generated by a high-power laser pulse in plasma / I.Yu. Kostyukov, N.V. Vvedenskii // Вопросы атомной науки и техники. — 2006. — № 2. — С. 70-72. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kostyukoviyu picsimulationofelectronaccelerationinawakefieldgeneratedbyahighpowerlaserpulseinplasma
AT vvedenskiinv picsimulationofelectronaccelerationinawakefieldgeneratedbyahighpowerlaserpulseinplasma
first_indexed 2025-07-06T02:49:26Z
last_indexed 2025-07-06T02:49:26Z
_version_ 1836864154242121728
fulltext PIC SIMULATION OF ELECTRON ACCELERATION IN A WAKE FIELD GENERATED BY A HIGH-POWER LASER PULSE IN PLASMA I.Yu. Kostyukov, N.V. Vvedenskii Institute of Applied Physics RAS, Nizhny Novgorod, 603950, Russia E-mail: kost@appl.sci-nnov.ru Acceleration in a plasma wake field is simulated with 2D axially symmetric hybrid PIC code. The dependence of the parameters of the accelerated electrons on the laser pulse duration (at a given pulse energy) is studied and the range of pulse duration values for efficient electron acceleration is found. PACS: 41.60.Ap, 52.40.Mj 1. INTRODUCTION When focused, petawatt laser pulses reach intensities up to I=1021 W/cm2 and an electric field is E=1014 V/m [1]. An appealing application for these laser fields is the high-gradient acceleration of charged particles. Indeed, would it be possible to use the petawatt laser field effi- ciently, a TeV accelerator may have length of a few cen- timeters only. T. Tajima and J. Dawson [2] have pro- posed to convert the transverse laser field into the longi- tudinal one of a plasma wave. The terawatt laser pulses exert Gigabar pressures on plasma electrons, separating them from ions and generating electric wake fields in the order of TV/m. It appears that the most attractive for wake field acceleration are laser pulses shorter than the plasma wavelength. Recently, impressive progress in the generation of short quasi-monoenergetic bunch of ultra relativistic electrons in laser plasma has been achieved [3]. One of the models [4,5], describing generation of quasi-mo- noenergetic bunch of ultra relativistic electrons, as- sumes that the generation is caused by transition to strongly nonlinear regime of laser-plasma interaction. The fast plasma wave breaking occurs at this regime. As a result, a periodic plasma wave mutates to the solitary ionic cavity – “bubble” which is free from plasma elec- trons and moving behind the laser pulse. The back- ground plasma electrons can be trapped in the bubble. The external electron bunch and the trapped electrons can be accelerated up to very high energy. Recent dramatic progress in laser pulse compression makes generation of ultrashort ultrahigh intensity laser pulses possible [6]. Therefore, it is important to study the effect of the laser pulse duration on the acceleration rate. The laser pulse energy is assumed to be un- changed. 2. ACCELERATION THEORY The one-dimensional electron dynamics in electro- magnetic fields is governed by Hamiltonian ,)(1 2 ϕ−++= xx APH (1) where xP is the canonical electron momentum, xA is the vector potential, ϕ is the scalar potential. We use dimensionless units, normalizing the time to pω/1 , the velocity to the speed of light c , the lengths to pc ω/ , the electromagnetic fields to ||/ emc pω , the electron densi- ty n to the background density 0n , ( ) 2/1 0 2 /4 mnep πω = is the plasma frequency, e and m are the electron charge and electron mass, respective- ly. We consider the electron acceleration in the electro- magnetic field of plasma wake generated by the laser pulse. The electromagnetic potentials are the function of tvx 0−=ξ , where 0v is the group velocity of the laser pulse. If potentials are the function of ξ then Hamiltoni- an (1) is not invariant of motion. We can change vari- ables in the Hamiltonian from x and xP to ξ and xPP =ξ by a canonical transformation with generating function ( ) ( ) ξξ PtvxtxPS 0,, −= . (2) The Hamiltonian in the new variables takes the form transformation ( )[ ] ( ) xxx PvAPH 0 21 −−++= ξϕξ . (3) Hamiltonian (3) does not depend on time and it is in- variant of motion. It can be rewritten in the form ( ) constpvH x =−Φ−= 0ξγ , (4) where 21 xp+=γ is the relativistic gamma-factor, ( ) xx AAv −≈−=Φ ϕϕξ 0 is the wake potential, xxx APp += is the kinetic momentum. The gauge xA−=ϕ (5) is used. The change in the electron energy in the ultrarela- tivistic limit 1> >γ , when the electron passes the dis- tance corresponding the change in the wake potential ∆ Φ , is ∆ Φ≈∆ 2 02γγ , (6) where ( ) 2/12 00 1 − −= vγ is the gamma-factor of the laser pulse. It is seen from Eq. (5) that the electron energy gain is proportional to the change in the wake potential and to the square of the gamma-factor of the laser pulse. 3. SIMULATION RESULTS We simulate the bubble generation by two-dimen- sional relativistic particle-in-sell hybrid code in cyl- indrical geometry. The quasistatic approximation (the plasma wake is assumed to be slowly changed in the laser pulse frame) is used to accelerate computation. It ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.70-72.70 follows from fully three-dimensional particle-in-cell simulations [7] that the laser pulse change is not signifi- cantly and the number of the trapped electrons is very small when the electrons stay in accelerating phase. In present simulation the dynamics of the laser pulse and the effect of the trapped electrons on the bubble are ne- glected. Fig.1. Density plot of bubble generation by the laser pulse with 1=lL , 1.140 =a (a); 2=lL , 100 =a (b); 5=lL , 3.60 =a (c). It is assumed constaLl =2 0 The incident laser pulse is circularly polarized, has the Gaussian envelope ( )2 2 2 2 0 exp / /l la a r r Lξ= − − , and the wavelength 82.0=λ μm. The parameter of the laser pulse 5=lr . The pulse propagates in plasma with the density 19 0 10=n cm-3. This laser pulse generates the bubble. It is assumed constaLl =2 0 . The density plot of bubble generated by the laser pulse is shown in Fig.1, where 1=lL , 1.140 =a (Fig.1,a); 2=lL , 100 =a (Fig.1,b); 5=lL , 3.60 =a (Fig.1,c). It is seen from Fig.1 that the shortest laser pulse generates the largest bubble. The simulation re- sults is similar to that [4,5] obtained by fully three di- mensional relativistic particle in cell code [8]. The wake potential peaks at the axis 0=r ( 0=Φ is assumed at infinity) [5]. Therefore, the maximal change in Φ is achieved if the electron moves along the axis 0=r . The wake potential of the bubbles at the axis 0=r shown in Fig.1 is presented in Fig.2. Fig.2. Φ as function of ξ at the axis 0=r for the laser pulse with 5=lL , 3.60 =a (line 1); 2=lL , 100 =a (line 2); 1=lL , 1.140 =a (line 3) It is seen from Fig.2 that the largest ∆ Φ is achieved for shortest laser pulse. Thus, the electron energy gain due to laser wake field acceleration is highest for the shortest laser pulse. 4. CONCLUSIONS It conclusions we study the effect of the laser pulse duration on the laser wake field acceleration. The elec- tron energy gain due to laser wake field acceleration is highest for the shortest laser pulse. It can be explained as follows. Inside the bubble the electrons are absent while the ions are uniformly dis- tributed. As a result the electric field is a linear function of ξ while the wake potential is proportional to 2ξ [5]. The maximum of the accelerating field (in the bubble boundary) as well as the maximum of the wake poten- tial (in the bubble center) are proportional to the bubble size. Therefore, high acceleration rate can be achieved in the large bubble. The shorter is the laser pulse the larger radius, where the laser intensity is still high, and the bigger is the gen- erated bubble (for given laser pulse energy). So, the wake field acceleration is more efficient with laser pulse as short as possible. ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.70-72. 25 0 0 20x-t Φ 1 2 3 70 200 -20 20 r x-t b) laser pulse 200 -20 20 r x-t a) laser pulse laser pulse 200 -20 20 r x-t c) The ponderomotive force concept is used to study laser pulse duration effect. This concept is based on the averaging over laser field periods. Therefore, our results are valid not for very short pulses. The laser pulse should contain many laser periods. More accurate analy- sis is needed to study the interactions with ultrashort laser pulse with a few laser periods. Our results are obtained under assumptions that the group velocity of the laser pulse does not depend on the pulse duration. However, further investigations are needed to study the effect of the pulse duration on the group velocity. This work has been supported in part by Russian Foundation for Basic Research (Grant No. 04-02-16684, No. 05-02-17367) and by Russian Science Support Foundation. REFERENCES 1. Gérard A. Mourou, Christopher P.J. Barty, and Michael D. Perry. Ultrahigh-Intensity Lasers: Physics of the Extreme on a Tabletop // Physics To- day. 1998, №1, p.22-26. 2. A.T. Tajima and J. Dawson. Laser Electron Accel- erators // Phys. Rev. Lett. 1979, v.43, №4, p.267- 270. 3. T. Catsoleas. Electrons hang ten on laser wake // Nature. 2004, v.431, №9, p.515-516. 4. A. Pukhov and J. Meyer-ter-Vehn. Laser wake field acceleration: the highly non-linear broken-wave regime // Applied Physics. 2002, v.B74, №3, p.355- 361. 5. I. Kostyukov, A. Pukhov, and S. Kiselev. Phe- nomenological theory of laser-plasma interaction in bubble regime // Physics of Plasmas. 2004, v.11, №14, p.5256-5264. 6. O. Shorokhov, A. Pukhov, and I. Kostyukov. Self- Compression of Laser Pulses in Plasma // Phys. Rev. Lett. 2004, v.91, №26, p.265002-1-265002-4. 7. S. Kiselev, A. Pukhov, and I. Kostyukov. X-ray generation in strongly nonlinear plasma waves // Phys. Rev. Lett. 2004, v.93, №13, p.135004-1- 135004-4. 8. A. Pukhov. Three-dimensional electromagnetic rel- ativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab) // Journal of Plasma Physics. 1999, v.61, №10, p.425-428. МОДЕЛИРОВАНИЕ МЕТОДОМ ЧАСТИЦ В ЯЧЕЙКАХ УСКОРЕНИЯ ЭЛЕКТРОНОВ В КИЛЬВА- ТЕРНОЙ ВОЛНЕ, ГЕНЕРИРУЕМОЙ МОЩНЫМ ЛАЗЕРНЫМ ИМПУЛЬСОМ В ПЛАЗМЕ И.Ю. Костюков, Н.В. Введенский В настоящей работе процессы ускорения электронов в кильватерной волне моделируются с помощью двумерного аксиально-симметричного гибридного численного кода, использующего метод частиц в ячей- ках. На основании проведенных численных расчетов определены зависимости параметров ускоренных элек- тронов от длительности лазерного импульса (при заданной его энергии) и найдены области оптимальных значений длительности импульса, отвечающие наиболее эффективной генерации ускоренных электронов. МОДЕЛЮВАННЯ МЕТОДОМ ЧАСТОК В ОСЕРЕДКАХ ПРИСКОРЕННЯ ЕЛЕКТРОНІВ У КІЛЬВАТЕРНІЙ ХВИЛІ, ГЕНЕРИРУЕМОЙ ПОТУЖНИМ ЛАЗЕРНИМ ІМПУЛЬСОМ У ПЛАЗМІ І.Ю. Костюков, Н.В. Введенський У дійсній роботі процеси прискорення електронів у кільватерній хвилі моделюються за допомогою двовимірного аксіально-симетричного гібридного чисельного коду, що використає метод часток в осередках. На підставі проведених чисельних розрахунків визначені залежності параметрів прискорених електронів від тривалості лазерного імпульсу (при заданій його енергії) і знайдені області оптимальних значень тривалості імпульсу, що відповідають найбільш ефективної генерації прискорених електронів. 62 Моделирование методом частиц в ячейках ускорения электронов в кильватерной волне, генерируемой мощным лазерным импульсом в плазме