Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator

Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches for application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac «Almaz-2» (4.5 МeV, 6.103 bunches of duration 60...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Onishchenko, I.N., Kiselev, V.A., Linnik, A.F., Onishchenko, N.I., Sotnikov, G.V., Uskov, V.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78772
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator / I.N. Onishchenko,V.A. Kiselev, A.F. Linnik, N.I. Onishchenko, G.V Sotnikov, V.V. Uskov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 79-81. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78772
record_format dspace
spelling irk-123456789-787722015-03-21T03:02:23Z Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator Onishchenko, I.N. Kiselev, V.A. Linnik, A.F. Onishchenko, N.I. Sotnikov, G.V. Uskov, V.V. Линейные ускорители заряженных частиц Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches for application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac «Almaz-2» (4.5 МeV, 6.103 bunches of duration 60 ps and charge 0.32 nC each). Исследовано возбуждение кильватерных полей в цилиндрическом диэлектрическом волноводе или резонаторе регулярной последовательностью электронных сгустков для целей высокоградиентного ускорения частиц как теоретически, так и в эксперименте на линейном электронном ускорителе «Алмаз-2» (4,5 МэВ, 6•103 сгустков длительностью 60 пс и зарядом 0,32 нКл каждый). Досліджено збудження кільватерних полів у циліндричному діелектричному хвилеводі або резонаторі регулярною послідовністю електронних згустків для цілей високоградієнтного прискорення часток як теоретично так і в експерименті на лінійному електронному прискорювачі «Алмаз-2» (4,5 МеВ, 6•103 згустків тривалістю 60 пс і зарядом 0,32 нКл кожний). 2006 Article Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator / I.N. Onishchenko,V.A. Kiselev, A.F. Linnik, N.I. Onishchenko, G.V Sotnikov, V.V. Uskov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 79-81. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 41.75.Lx, 41.85.Ja, 41.60.Bq http://dspace.nbuv.gov.ua/handle/123456789/78772 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
spellingShingle Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
Onishchenko, I.N.
Kiselev, V.A.
Linnik, A.F.
Onishchenko, N.I.
Sotnikov, G.V.
Uskov, V.V.
Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator
Вопросы атомной науки и техники
description Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches for application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac «Almaz-2» (4.5 МeV, 6.103 bunches of duration 60 ps and charge 0.32 nC each).
format Article
author Onishchenko, I.N.
Kiselev, V.A.
Linnik, A.F.
Onishchenko, N.I.
Sotnikov, G.V.
Uskov, V.V.
author_facet Onishchenko, I.N.
Kiselev, V.A.
Linnik, A.F.
Onishchenko, N.I.
Sotnikov, G.V.
Uskov, V.V.
author_sort Onishchenko, I.N.
title Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator
title_short Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator
title_full Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator
title_fullStr Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator
title_full_unstemmed Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator
title_sort experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Линейные ускорители заряженных частиц
url http://dspace.nbuv.gov.ua/handle/123456789/78772
citation_txt Experimental and theoretical researches of a resonator concept of a dielectric wakefield accelerator / I.N. Onishchenko,V.A. Kiselev, A.F. Linnik, N.I. Onishchenko, G.V Sotnikov, V.V. Uskov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 79-81. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT onishchenkoin experimentalandtheoreticalresearchesofaresonatorconceptofadielectricwakefieldaccelerator
AT kiselevva experimentalandtheoreticalresearchesofaresonatorconceptofadielectricwakefieldaccelerator
AT linnikaf experimentalandtheoreticalresearchesofaresonatorconceptofadielectricwakefieldaccelerator
AT onishchenkoni experimentalandtheoreticalresearchesofaresonatorconceptofadielectricwakefieldaccelerator
AT sotnikovgv experimentalandtheoreticalresearchesofaresonatorconceptofadielectricwakefieldaccelerator
AT uskovvv experimentalandtheoreticalresearchesofaresonatorconceptofadielectricwakefieldaccelerator
first_indexed 2025-07-06T02:49:32Z
last_indexed 2025-07-06T02:49:32Z
_version_ 1836864160726515712
fulltext EXPERIMENTAL AND THEORETICAL RESEARCHES OF A RESONATOR CONCEPT OF A DIELECTRIC WAKEFIELD ACCELERATOR I.N. Onishchenko,V.A. Kiselev, A.F. Linnik, N.I. Onishchenko, G.V Sotnikov, V.V. Uskov NSC Kharkov Institute of Physics and Technology, Kharkov, Ukraine E-mail: onish@kipt.kharkov.ua Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches for application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac «Almaz-2» (4.5 МeV, 6.103 bunches of duration 60 ps and charge 0.32 nC each). PACS: 41.75.Lx, 41.85.Ja, 41.60.Bq 1. INTRODUCTION Along with laser acceleration in plasma and vacuum, a dielectric wakefield acceleration (DFWA) is one of the novel methods of high gradient acceleration of charged particles. Three issues arise in connection with intense wakefield excitation in a dielectric. A wakefield in a dielectric (Cherenkov radiation) excited by charged particles can be enhanced by using a regular sequence of relativistic electron bunches (multi-bunch operation) [1], an interference of many transverse modes to enlarge peak amplitude (multi-mode operation) [2], and a reso- nant accumulation of wakefield in a cavity resulting from many bunches (resonator concept) [3]. We wish to exploit the third approach while retaining working the other two. In the present work we attempt to clarify by theory and experiments the process of wakefield excita- tion in a cylindrical dielectric waveguide and resonator using a long sequence of relativistic electron bunches. The temporal evolution and spatial distribution of the excited wakefield are investigated by HF probes for both waveguide and resonator cases and comparison was made. Electron energy loss measured by a magnetic analyzer and the total energy of the excited HF wake- field measured by a calorimeter were compared to deter- mine the energy balance. 2. THEORY For a semi-infinite dielectric waveguide the problem of wakefield excitation was solved analytically [4]. There are two new peculiarities compared to the case of the infinite waveguide: an appearance of transition radi- ation and wakefield removal with group velocity from the waveguide entrance. As a result, the net field ampli- tude grows from the entrance to the trailing edge of the first bunch field and then decreases to the position of the first bunch. The field amplitude at a given cross-section grows and after the passage of several bunches it satu- rates; however, the saturation level does not depend on the total number of bunches but is determined by the distance to the entrance. The more complicated problem with a hole for the bunches was solved in cylindrical geometry for a waveguide of finite length [5] and for a resonator [6]. Due to wakefields moving along the system with group velocity, the number of bunches whose wakefields can be coherently added giving maximum amplitude at the waveguide exit, is restricted in the first case by ( )1//1 0max −∆+≈ gvvzLN , (1) where L is a waveguide length, ∆z is a distance between bunches, v0 and v g are the bunch velocity and group ve- locity, respectively. The presence of the hole results in an appearance of oscillations with the group velocity of light in vacuum. These oscillations move ahead of bunch and form a weak field precursor. For the res- onator, a single bunch excites a multibunch wakefield which is the same as the field in a semi-infinite waveg- uide [4] until it is reflected from the resonator exit. Ex- citation by a sequence of bunches results, first in the ex- citation of only the resonant fundamental mode, the fre- quency of which coincides with the bunch repetition fre- quency (mode-locking) and, secondly, in the linear growth of the field amplitude with time in proportion to the number of injected bunches. The saturation level is determined by a nonlinear electron-wave interaction for the NSC KIPT experiment with 4 MeV bunches [6]. It might be supposed that for higher energy (e.g. an exper- iment with 0.5 GeV bunches) the saturation could be caused the Q-factor of the resonator. To demonstrate both multimode and multibunch regimes in a resonator case, a rectangular dielectric res- onator (still without a vacuum channel) which provides equidistant resonant modes, was theoretically investigat- ed [7]. It was shown that multimode operation is real- ized under the condition: 2 0 0 01, /L Na v cβ ε β= − = , (2) i.e., the length of the resonator L should be a multiple N of half-integer wave lengths of the resonant fundamen- tal mode; a is the transverse size; the other transverse size b is supposed much larger, ε is the permittivity. For coherent summing of wakefields from injected bunches the coincidence of the fundamental mode frequency and the frequency f of bunch repetition should be fulfilled. This condition sets the transverse size of the resonator 2 0 0/ 2 1a v f β ε= − . (3) Conditions (5) and (6) are the basis of the resonator concept of the rectangular DWFA. 3. EXPERIMENT Experiments to study the excitation of wakefields in a cylindrical dielectric structure (waveguide or res- onator) were performed using the linear resonant elec- tron accelerator “Almaz-2” at the NSC KIPT. ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.79-81. 79 3.1. EXPERIMENTAL SETUP The scheme of the installation is described in [8]. An electron beam had the following parameters: energy 4.5 MeV, current 0.5 A, impulse duration 2 µsec, modu- lation frequency 2820 MHz. Therefore, we had a regular sequence of 6⋅103 bunches, 60 ps duration each spaced by 300 ps. The diameter and length of each bunch were 1.0 cm and 1.7 cm, respectively. This sequence of electron bunches was injected into a dielectric structure made from Teflon (permittivity ε =2.1, tgδ=1.5⋅10-4 at a frequency f=3⋅109 Hz). The length of the dielectric structure was varied up to 65 cm, the outer diameter was 8.6 cm and the diameter of the hole was 2.2 cm. The dielectric structure was placed into a copper tube of length 100 cm. 3.2. WAKEFIELD SPATIAL DISTRIBUTION The transverse topography of the excited field is found to be almost azimuthally symmetric. The radial dependence of the Er – component of the field shows a small value on the axis and a maximum near the tube wall. The radial dependence of the longitudinal Ez – component shows a maximum it on the axis and a small value near the wall. Such topography of the excited field demonstrates that in the present experiment E0n – waves are excited. Beyond-cutoff waveguides were used to es- timate the contribution of higher radial modes. It was found that their total contribution is less than half of the fundamental mode. This result confirms theoretical con- clusion [5] that a coincidence of the bunch repetition frequency with the fundamental frequency but not with the difference frequency between the non-equidistant frequencies of the higher modes results in survival of the resonant fundamental mode and suppression of the other modes. The longitudinal distribution of the excited fields in the waveguide of finite length was measured in the fol- lowing way. The dielectric structure was cut into several pieces of various length (1, 2, 5, and 10 cm) and the electric field was measured at exit of the structure, which is composed of a number of dielectric pieces to assemble the required length. The results of measure- ments of Ez after passing of 6⋅103 bunches are depicted in Fig.2 (curve 1). A linear growth of amplitude of the longitudinal component of the field along the dielectric waveguide was observed. This proves the theoretical re- sult [5] according to which at the time when Nmax bunch- es have passed through the structure a linear stationary longitudinal distribution of Ez has been established. Fig.2. Ez dependence on dielectric length In the case of the resonator, the longitudinal distribu- tion of Ez obtained by measuring Ez at the exit end of each dielectric insertion consisting of a certain number of pieces is shown in Fig.2 (curve 2). As seen from Fig.2, the resonator electric field amplitude is larger than for the waveguide. Besides, the longitudinal depen- dence has a resonant character. Accumulation of wake- field in a dielectric resonator of appropriate length was proposed in [3] with the aim of enlarging the number of coherently contributing bunches. If the amplitude is pro- portional to the number of contributing bunches, we conclude that the resonator allows one to increase the number of contributing bunches approximately 4 times for length 10 cm and 2 times for length 65 cm. Resonant behavior is explained by the effective excitation at a co- incidence (multiplicity) of resonator and bunch repeti- tion frequencies. 3.3. WAKEFIELD TEMPORAL EVOLUTION To determine the increase in the number of coher- ently contributing bunches for the resonator case, we changed the duration of the beam current macro-pulse. This was achieved by using a time delay of the HF- pulse of the master oscillator of the klystron feeding the linac, with respect to the high voltage pulse applied to the klystron. This results in beam duration in the range τ =0.1…2.0 µsec without changing other beam parame- ters. In this way we could compose trains with a number of bunches 3⋅102 up to 6⋅103. The results of measuring the dependence of the ex- cited field amplitude upon beam pulse duration, i.e., upon the number of bunches, are shown in Fig.3 at a di- electric length 30 cm. It is seen that for the waveguide case (curve 1) the amplitude achieves saturation caused by the group velocity effect [4,5] at a time <0.1µsec (i.e. Nmax<300). According to theory (1) for experimental conditions v0 /vg=2, Nmax theory =3. For the resonator case (curve 2) the saturation time is much longer and occurs at 0.3µsec (i.e. N= 900 bunches). The number of con- tributing bunches in the waveguide case can be estimat- ed from Fig.2 by amplitudes ratio 4 for L=30 cm, and it makes Nmax =225. This greatly exceeds the theoretical value and such a discrepancy must be explained in fur- ther research. Also, the physical mechanism of ampli- tude saturation is not revealed yet. Provisionally, we suppose that for low electron energy the reason for satu- ration is a nonlinear particle-wave interaction, but for super-relativistic bunches it might be the Q-factor. For smaller beam current 0.25 A (curve 3) the amplitude grows slower and does not achieve saturation. Fig.3. Ez dependence on pulse duration 70 3.4. ENERGY LOSS OF ELECTRON BUNCHES To find the dependence of bunch energy loss on wakefield excitation, an electron energy spectrum was measured by magnetic analyzers at the accelerator exit (initial spectrum) and after passing the dielectric struc- ture at a distance 100 cm from the linac exit (spectrum after excitation). In Fig.4 initial spectrum (curve 1) and spectrum after excitation (curve 2) for a dielectric length of 65 cm are presented. We find that the electron energy loss is 3% for waveguide (Fig.4,a) and 12% for res- onator (Fig.4,b). For the resonator case accelerated elec- trons are observed. 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 dN /d W , a . u . W, MeV 12 a 3 4 5 6 0 1 2 3 dN /d W , a .u . W, MeV b 1 2 b Fig.4. Electron energy spectra 3.5. CALORIMETER MEASUREMENTS The total energy of excited wakefields was mea- sured by a specially constructed sensitive calorimeter [9]. Electron bunches were deflected by a magnetic field or passed through a hole in the calorimeter. It was found that the total excited energy in the waveguide case is 1.4% of the initial beam energy. The dependence upon the number of bunches in the train is similar to one ob- served in amplitude measurements (Fig.3, curve 1). To explain this discrepancy of the calorimeter data with re- spect to the energy spectrum loss, we measured the damping of an excited field in the metal tube. It oc- curred 3 dB, i.e., 2 times. Thus we conclude that the en- tire beam energy loss of about 3% is expended on wake- field excitation, within reasonable energy balance. CONCLUSIONS 1. The radial topography of excited wakefields was studied and it was established that the excited modes are predominantly of E0n-type. 2. By changing the number of bunches it was shown that in the waveguide case the wakefield amplitude is built up by a small number of bunches (less 300), that is explained by a wakefield removal with group velocity. 3. The resonator concept was verified, so that at right choice of resonator parameters and bunch repeti- tion frequency, more bunches contribute coherently and the amplitude of the wakefield grows considerably. 4. The electron energy spectra for waveguide and resonator cases were measured, from which it was con- cluded that for an electron energy of 4.5 MeV and cur- rent 0.5 A, and dielectric length of 65 cm, the energy loss during the interaction was 12% for the resonator and 3% for the waveguide. 5. Calorimeter measurements were found to be in agreement with results from the HF-probes and allow one to determine the overall excited wakefield energy. Research supported by CRDF UP2-2569-KH-04 and Ukr DFFD 02.07/325. REFERENCES 1. I.N. Onishchenko, V.A. Kiseljov, A.K. Berezin et al. Proc. of the PAC. New York. 1995, p.782. 2. T.B. Zhang, J.L. Hirshfield, T.C. Marshall, B. Hafizi // Phys. Rev. 1997, E56, p.4647. 3. T.C. Marshall, J.-M. Fang, J.L. Hirshfield, S.J. Park. AIP Conf. Proc. 2001, №569, p.316. 4. I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov // Phys. Rev. 2002, E65, p. 066501-1-11. 5. N.I. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov // Ukr. Fiz. Zh. 2003, v.48, p.16. 6. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov // Technical Phys. Lett. 2003, v.29, №7, p.589. 7. N.I. Onishchenko, G.V Sotnikov. Coherent summa- tion of wake fields excited by electron bunch se- quence in planar multimode dielectric resonator // this issue, p.73-75. 8. V.A. Kiselev, A.F. Linnik, I.N. Onishchenko et al. The experimental stand for research of wakefield method of charged particles acceleration // this is- sue, p.76-78. 9. V.A. Kiselev, A.F. Linnik, I.N. Onishchenko, V.V. Uskov // Instruments and Experimental Tech- niques. 2005, №2, p.103-106. ЭКСПЕРИМЕНТАЛЬНЫЕ И ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ РЕЗОНАТОРНОЙ КОНЦЕПЦИИ КИЛЬВАТЕРНОГО ДИЭЛЕКТРИЧЕСКОГО УСКОРИТЕЛЯ И.Н. Онищенко, В.А. Киселев, А.Ф. Линник, Н.И. Онищенко, Г.В. Сотников, В.В. Усков Исследовано возбуждение кильватерных полей в цилиндрическом диэлектрическом волноводе или резо- наторе регулярной последовательностью электронных сгустков для целей высокоградиентного ускорения частиц как теоретически, так и в эксперименте на линейном электронном ускорителе «Алмаз-2» (4,5 МэВ, 6·103 сгустков длительностью 60 пс и зарядом 0,32 нКл каждый). ЕКСПЕРИМЕНТАЛЬНІ ТА ТЕОРЕТИЧНІ ДОСЛІДЖЕННЯ РЕЗОНАТОРНОЇ КОНЦЕПЦІЇ КІЛЬВАТЕРНОГО ДІЕЛЕКТРИЧНОГО ПРИСКОРЮВАЧА І.М. Оніщенко, В.О. Кисельов, А.Ф. Лінник, М.І. Оніщенко, Г.В. Сотніков, В.В. Усков Досліджено збудження кільватерних полів у циліндричному діелектричному хвилеводі або резонаторі регулярною послідовністю електронних згустків для цілей високоградієнтного прискорення часток як ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.79-81. 79 теоретично так і в експерименті на лінійному електронному прискорювачі «Алмаз-2» (4,5 МеВ, 6·103 згустків тривалістю 60 пс і зарядом 0,32 нКл кожний). 72 ЭКСПЕРИМЕНТАЛЬНЫЕ И ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ РЕЗОНАТОРНОЙ КОНЦЕПЦИИ кильватерного диэлектрического ускорителя ЕКСПЕРИМЕНТАЛЬНІ ТА ТЕОРЕТИЧНІ ДОСЛІДЖЕННЯ РЕЗОНАТОРНОЇ КОНЦЕПЦІЇ кІльватерного дІЕлектричНОГО ПРИСКОРЮВАЧА