Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide

Wake field excitation by a sequence of electron bunches in rectangular dielectric waveguide of finite length is investigated for acceleration with high gradient electric field. Characteristics of wake field for parameters of planned in NSC KIPT experiments are determined.

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Onishchenko, N.I., Sotnikov, G.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/78946
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide / N.I. Onishchenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 146-148. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78946
record_format dspace
spelling irk-123456789-789462015-03-25T03:02:22Z Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide Onishchenko, N.I. Sotnikov, G.V. Plasma electronics Wake field excitation by a sequence of electron bunches in rectangular dielectric waveguide of finite length is investigated for acceleration with high gradient electric field. Characteristics of wake field for parameters of planned in NSC KIPT experiments are determined. Досліджені процеси збудження кільватерного поля електронними згустками та їх послідовністю в прямокутних діелектричних хвилеводах скінченої довжини: напів обмеженого хвилеводу та резонаторі. Визначені характеристики кільватерного поля для параметрів запланованого в ННЦ ХФТІ експерименту Исследовано возбуждение кильватерного поля электронными сгустками и их последовательностью в прямоугольных диэлектрических волноводах конечной длины: полу бесконечном волноводе и резонаторе. Определены характеристики кильватерного поля для параметров планируемого в ННЦ ХФТИ эксперимента. 2005 Article Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide / N.I. Onishchenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 146-148. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 41.60.-m http://dspace.nbuv.gov.ua/handle/123456789/78946 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma electronics
Plasma electronics
spellingShingle Plasma electronics
Plasma electronics
Onishchenko, N.I.
Sotnikov, G.V.
Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide
Вопросы атомной науки и техники
description Wake field excitation by a sequence of electron bunches in rectangular dielectric waveguide of finite length is investigated for acceleration with high gradient electric field. Characteristics of wake field for parameters of planned in NSC KIPT experiments are determined.
format Article
author Onishchenko, N.I.
Sotnikov, G.V.
author_facet Onishchenko, N.I.
Sotnikov, G.V.
author_sort Onishchenko, N.I.
title Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide
title_short Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide
title_full Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide
title_fullStr Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide
title_full_unstemmed Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide
title_sort simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Plasma electronics
url http://dspace.nbuv.gov.ua/handle/123456789/78946
citation_txt Simulation of wakefields excited by a train of electron bunches in rectangular dielectric waveguide / N.I. Onishchenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 146-148. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT onishchenkoni simulationofwakefieldsexcitedbyatrainofelectronbunchesinrectangulardielectricwaveguide
AT sotnikovgv simulationofwakefieldsexcitedbyatrainofelectronbunchesinrectangulardielectricwaveguide
first_indexed 2025-07-06T03:04:50Z
last_indexed 2025-07-06T03:04:50Z
_version_ 1836865123765977088
fulltext SIMULATION OF WAKEFIELDS EXCITED BY A TRAIN OF ELECTRON BUNCHES IN RECTANGULAR DIELECTRIC WAVEGUIDE N.I. Onishchenko , G.V. Sotnikov National Science Center «Kharkov Institute of Physics & Technology», 61108, Academicheskaya Str.1, Kharkov, Ukraine, e-mail: onish @ kipt . kharkov . ua Wake field excitation by a sequence of electron bunches in rectangular dielectric waveguide of finite length is inves­ tigated for acceleration with high gradient electric field. Characteristics of wake field for parameters of planned in NSC KIPT experiments are determined. PACS: 41.60.-m 1. INTRODUCTION Recently several papers appeared, which are devoted to accel­ eration of electrons by wakefield in dielectric filled waveguide [1-3]. Increased interest to wakefields in dielectric is connect­ ed with the fact that short charged bunches excite simultane­ ously a great many of radial harmonics of the dielectric waveguide that leads to compression of wakefields in longitu­ dinal direction and to formation of narrow peaks of field on the axis of system with intensity much greater, than amplitude of one radial harmonic [4]. In papers [4,5] regular sequences of bunches with rather small charge, fields from which would sum coher­ ently, were offered to use for achieving intensive acceler­ ating fields. Experimentally it easier to create such se­ quence, than a single bunch with big charge. Neverthe­ less, this method faces with the following difficulties. Firstly, for providing of effective coherent summing of multimode fields it is necessary to provide equidistance of the next resonance frequencies of the waveguide [4]. However in the cylindrical waveguide with partial dielec­ tric filling the requirement of equidistance of excited fre­ quencies is fulfilled only approximately. Secondly, the pattern of field excitation in the dielec­ tric waveguide with finite length qualitatively differs from the idealized model of infinite waveguide. Good approxi­ mation for describing of waveguide of finite length with­ out reflections on the output is the semi-infinite waveg­ uide. The solution of wake problem in semi-infinite waveguide has shown, that when driving bunches excite only traveling forward wave, "removal" of excited oscilla­ tions after bunches with group velocity [6] occurs. There­ fore in waveguide without reflections at excitation of wakefield from a sequence of big number of bunches only a part of this sequence will be effective. With the purpose to bypass the mentioned difficulties in Brookhaven [1] and NSC KIPT experiments on excita­ tion of wakefields in the rectangular dielectric waveguide are planed. For theoretical substantiation of planed exper­ iments we carried out the research of effects of longitudi­ nal finiteness on excitation of wakefields. 2. WAKEFIELD IN THE SEMIINFINITE RECTANGULAR DIELECTRIC WAVEGUIDE Let's consider a rectangular metal waveguide with width b ( 0 x bЈ Ј ) and height d ( 0 y dЈ Ј ). The waveguide is filled by homogeneous dielectric with per­ mittivity ε . In longitudinal direction the waveguide occu­ pies area 0 ≤ z∞ . From the end 0z = it is short-cir­ cuited by a metal wall. We suppose, that monoenergetic point electron bunch moves with constant velocity 0v along the axis of waveguide to the end face of waveguide. Distribution of charge density and current density of such bunch is: ( ) ( ) ( )0 0 0 0 0/ / ,b L zQ x x y y t t z v v j vρ δ δ δ ρ= − − − − = , where bQ is bunch charge, 0t is time of bunch arrival to the waveguide, 0 0,x y are transverse coordinates of bunch. Having solved a wave equation with boundary condi­ tions on metal walls of a waveguide we shall obtain ex­ pression for a longitudinal electric field as the sum of Cherenkov radiation cher zE and the transition radiation trans zE [7]: ( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 , , , , , , , , , , , , , , , , , , , z cher trans z z E t x y z t x y E t x y z t x y E t x y z t x y = + ( )0 0 0 0 0 , 0 0 0 0 0 , , , , , , 16 sin sin sin sin cos[ ( / )] ( / ) ( / ) , cher z b k l kl g E t x y z t x y Q k l k lx y x y bd b d b d t t z v t t z v t t z v π π π π π ε ω = ц ц ц цж ж ж ж− ґз ч з ч з ч з чи и и иш ш ш ш й щ− − Θ − − − Θ − −л ы е ( ) ( ) ( ){ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 , 0 0 2 2 1 2 2 0 1 2 2 0 1 2 2 1 , , , , , , 16 sin sin sin sin / / 1 / 1 , trans z b k l ph gr m m m m gr m m m m m m E t x y z t x y Q k l k lx y x y bd b d b d t t z v t t z v r r J y t t z v J y r r J y π π π π π ε θ θ θ Ґ = Ґ − = = ц ц ц цж ж ж ж− ґз ч з ч з ч з чи и и иш ш ш ш й щ− − − − − ґл ы − − + − − ґ ьй щп+ − + эк ъпл ыю е е е where 2 2 2 2 2 0[( / ) ( / ) ] /( / 1/ )kl k b l b c vω π π ε= + − , 0J - cylin­ drical functions, ( )xθ - Heaviside function and 0 0 1 0 0 / 1 / , / , / 1 / ph ph ph ph ph t t z v v v r v c t t z v v v ε − − − = =Ч − + + , 0 0 2 2 0 0 0 / 1 / , / / 1 / ph ph gr ph ph t t z v v v r v c v t t z v v v ε − − + = =Ч − + − . Vavilov - Cherenkov wakefield with the account of "damping wave» is nonzero at ( ) ( )0 0 0grt t v z t t v− < −Ј . Within this area the envelope of cherenkov signal is con­ stant. Value grv is group velocity of synchronous with bunch electromagnetic wave. The plane ( )0 gr grz t t v= − is 146 Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 146-148 mailto:sotnikov@kipt.kharkov.ua back front of wakefield. This front moves after a bunch with group velocity. The field of transitional radiation exists in area ( )00 phz t t v< −Ј . Value phv is the greatest velocity of elec­ tromagnetic signal propagation in the dielectric waveguide, with this velocity the fastest high-frequency part of transitional signal – so-called "precursor" is propagated. For a bunch of finite sizes or for a sequence of bunch­ es the expression for wakefield is fulfilled by integration on transverse coordinates and on moments of entrance of elementary charges. In Fig.1-Fig.2 results of calculations for the following pa­ rameters are presented: 4.3b cm= ; 8.6d cm= ; the charge of a single bunch 0.32bQ nC= − ; energy– 4 MeV ; transverse sizes of a bunch- 0 1.0b cm= 0 1.0d cm= ; 2.83ε = . 0 20 40 60 80 100 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 E z, k V /c m z, cm a 0 20 40 60 80 100 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 E z, k V /c m z, cm b Fig. 1. Wakefield excited by a single bunch in the semi-in­ finite dielectric waveguide at t=3.29 ns: (a) - cherenkov field, (b)- full field. The label and dash line show bunch location The single bunch excites a plenty of transverse harmon­ ics (we consider 50 harmonics on x and 50 harmonics on y ). As frequencies of excited harmonics are not divisible ratio with the lowest eigen frequency the longitudinal structure of the field has the irregular character even without taking into account transitional radiation. Presence of transition radiation especially complicates the field pattern as it contains the whole continuous spectrum of frequencies, beginning from a cut-off frequency. The field excited by a bunch flies out from a system with a group velocity and near to input of system the amplitude of the field is close to zero. When in the semi-infinite waveguide the sequence of bunches is injected with repetition rate 2886f MHz= , which is equal to lowest eigen frequency of structure, the longitudinal structure of the field qualitatively changes. It becomes regular with the narrow peaks following with period of bunch train. I.e. the sequence of bunches "cuts out" from a spectrum excited by a single bunch only fre­ quencies multiple to of bunch repetition rate. And, as fol­ lows from comparison of curves on Fig. 2, the transition field destroys insignificantly regular structure of the field. "Removal" of excited oscillations with group velocity re­ duces in restriction of maximum quantity of bunches which give the contribution to growth of amplitude of the field [6,7]. On length of the system 100L cm= this bunch quantity is 17. Additional injection of bunches will not re­ duce in increase of amplitude of the field at given length of structure. 0 20 40 60 80 100 -4 -2 0 2 4 E z, k V /c m z, cm a 0 20 40 60 80 100 -4 -3 -2 -1 0 1 2 3 4 E z, k V /c m z, cm b Fig. 2. Wakefield excited by a sequence of 17 bunches in the semi-infinite dielectric waveguide at t=8.43 ns: (a)- cherenkov field, (b)- full field. Labels and dash lines show locations of the last 2 bunches of a sequence 3. WAKEFIELD IN RECTANGULAR DIELEC­ TRIC RESONATOR Let's suppose, that output end of waveguide z L= as well as input end is closed by the metal gride, transparent for particles. Then the statement of problem of the previous section passes in determination of the longitudinal electric field excited by a point electron bunch in the rectangular dielectric resonator. We will suppose, that the height of the resonator considerably exceeds its width, therefore we will neglect dependence of excited fields on coordinate y . Having solved wave equation with boundary conditions analogous to the previous section and a source we obtain expression for longitudinal electric field ] } 2 2 2 0 10 02 2 1 0 2 2 2 0 0 2 2 2 0 0 2 2 2 0 0 0 0 cos( ) / sin[ ( )] / sin[ ( )] ( ) /( 1) sin[ ( / )] / sin[ ( / )] ( / ) ( l ml l z l ml m l ml l ml l l l l l ml l ml ml l l l m l k z k cE E t t k c t t t t k c t t L v k c t t L v t t L v G ω εδ ω ω ω ω ω ω ε ω θ ω ω ε ω ω ω ε ω θ ω Ґ Ґ = = мй −п= − −нк− пло щ− − − −ъ ы й −− − − −к л − − − − − е е 0, ),x x where 0 0 108 /bE Q v aLπ εω= − , 2 2 2 2[ ] /ml m lk cω κ ε= + , 0l lk vω = , /m m bκ π= , /lk l Lπ= ; function lδ is equal 1 if 0l = it is equal 2 if 0l№ ; 0 0( , ) sin( )sin( )m m mG x x x xκ κ= . As seen from full field will consist of the field of space charge (corresponding to frequencies lω ) and the fields, excit­ ed by a bunch in the resonator on frequencies mlω . After exit of particles from the resonator the field of space charge as fol­ lows from , disappears. It should be noted, that at the condition ml lω ω= the corresponding items in the sum become domi­ nant. The indicated condition is exactly cherenkov radiation in delay medium. Then these resonant items may be treated as 147 cherenkov radiation in the dielectric resonator, and the rest of the field as transition radiation on both boundaries. Let's note, that radiation of a charged particle in the vacuum rectangular resonator is first considered in [8], and in the cylindrical vacu­ um resonator in [9]. In these cases the condition of cherenkov radiation is not fulfilled. The resonant case is of interest for our researches. a b Fig. 3. Wakefield excited by a single bunch in the flat di­ electric resonator: (a) - at t=3.415ns, (b) – at t=99ns Let's choose for the calculations parameters of experi­ ment for the setup in NSC KIPT: charge of a single bunch 0.32bQ nC= − , energy– 4 MeV , 4.3b cm= , bunch repeti­ tion rate 2850 MHz , 2.509ε = , 104.51L cm= . For such sizes the resonant condition is fulfilled for numbers of longitudinal and transverse harmonics at ratio 5=l m . On fig.3-fig.4 outcomes of calculations are presented allowing in sums for 151 longitudinal harmonics and 1 transverse harmonic. a b Fig. 4. Wakefield excited by a sequence of 100 bunches in the plane dielectric resonator: (a) – at t=3.415 ns, (b) - at t=99.942ns In Fig.3 the longitudinal structure of the field excited by a single bunch is presented. Before bunch exit from the resonator (t=3.415 ns) structure of the field corresponds to structure of the field in semi-infinite waveguide, the am­ plitude of the field decreases from the position of group front to the enter of the resonator (line 1 shows the loca­ tion of a bunch, 2 – phase front, 3 – group wave front). At long times, after a multiple reflection of group wave front from the both end-walls of the resonator, levelling of am­ plitude of the field along its length occurs (see the graph for t=99 ns). The longitudinal structure of the field created by a se­ quence of 100 bunches in the dielectric resonator is presented on Fig. 4. The upper figure corresponds to the moment of time when the first bunch of sequence is near to the output of the resonator (line 1 - the location of the first bunch, 2 – phase wave front from the first bunch, 3 – group wavefront from the first bunch). The amplitude of the field grows from a head of sequence to the position of the group wave front, excited by the first bunch, and then decreases to the enter of the resonator. Wakefield in the resonator qualitatively and quantitatively co­ incides with the field in semi-infinite waveguide up to exit of the first bunch from the waveguide (see Fig. 2). At major times, after exit of all bunches from the resonator, the homo­ geneous distribution of amplitude is established in the waveg­ uide. Comparing Fig. 2 and Fig. 4 it follows, that in the res­ onator it is possible to excite wakefield with the ampli­ tude considerably exceeding amplitude of the field in the semi-infinite waveguide. At that the regularity of oscilla­ tions is conserved. 4. ACKNOWLEDGEMENTS The study is supported in part by CRDF Grant No. UP2-2569-KH-04 REFERENCES 1. T.C. Marshal, C. Wang, J.L. Hirshfield // Phys. Rev. STAB 4, 121301, 2001. 2. S.Y. Park and J.L. Hirshfield // Phys. Rev. 2000, E 62, 1266. 3. W. Gai, P. Schoessow // Nucl. Instr. and Meth. in Phys. Res. 2001, A451, p.1 4. T.B. Zhang, J.L.Hirshfield, T.C. Marshal, B. Hafizi // Phys. Rev. 1997, E 56, p.4647. 5. V. Kiselev, A. Linnik, I. Onishchenko, G. Sotnikov et al. Dielectric Wake-Field Generator // 12th Intern. Conf. jn High-Power Particle Beams. BEAMS’98, Haifa, Israel, June 7-12,1998, v.I, p.756. 6. I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov // Physical Review E65. 2002, p.066501-1-11. 7. N.I. Onishchenko, G.V. Sotnikov // Problems Atomic Sci. and Tech. 2004, N 4, p.109 8. K.D. Sinelnikov, A.I. Akhiezer, Ya.B. Fainberg // Collection of Sci. Work of Artillery Acad. 1953, p.1. 9. V.A. Buts, I.K. Kovalchuk // Ukr. Phys.J. 1999, 44, p.1356. МОДЕЛИРОВАНИЕ ВОЗБУЖДЕНИЯ КИЛЬВАТЕРНОГО ПОЛЯ ПОСЛЕДОВАТЕЛЬНОСТЬЮ ЭЛЕКТРОННЫХ СГУСТКОВ В ПРЯМОУГОЛЬНОМ ДИЭЛЕКТРИЧЕСКОМ ВОЛНОВОДЕ Н.И. Онищенко, Г.В. Сотников Исследовано возбуждение кильватерного поля электронными сгустками и их последовательностью в прямо­ угольных диэлектрических волноводах конечной длины: полу бесконечном волноводе и резонаторе. Определе­ ны характеристики кильватерного поля для параметров планируемого в ННЦ ХФТИ эксперимента. МОДЕЛЮВАННЯ ЗБУДЖЕННЯ КИЛЬВАТЕРНОГО ПОЛЯ ПОСЛІДОВНІСТЮ ЕЛЕКТРОННИХ ЗГУСТКІВ В ПРЯМОКУТНОМУ ДІЕЛЕКТРИЧНОМУ ХВИЛЕВОДІ М.І. Онищенко, Г.В. Сотников Досліджені процеси збудження кільватерного поля електронними згустками та їх послідовністю в прямокут­ них діелектричних хвилеводах скінченої довжини: напів обмеженого хвилеводу та резонаторі. Визначені ха­ рактеристики кільватерного поля для параметрів запланованого в ННЦ ХФТІ експерименту.