Study of ultrarelativistic beam emittance

We estimated a minimum radius of a beam under given normalized emittance and a minimum emittance of proton and electron beams. We obtained the simple expression for a minimum radius of a beam xmin = En/1 rad and the value of the minimum for normalized emittance for proton and electron beams En,1 ~ 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
1. Verfasser: Khoruzhiy, V.M.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Schriftenreihe:Вопросы атомной науки и техники
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79012
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Study of ultrarelativistic beam emittance / V.M. Khoruzhiy // Вопросы атомной науки и техники. — 2001. — № 5. — С. 172-173. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79012
record_format dspace
spelling irk-123456789-790122015-03-25T03:02:43Z Study of ultrarelativistic beam emittance Khoruzhiy, V.M. We estimated a minimum radius of a beam under given normalized emittance and a minimum emittance of proton and electron beams. We obtained the simple expression for a minimum radius of a beam xmin = En/1 rad and the value of the minimum for normalized emittance for proton and electron beams En,1 ~ 0.01 cm·mrad and En,2 ~ (0.01÷1) cm·mrad respectively. 2001 Article Study of ultrarelativistic beam emittance / V.M. Khoruzhiy // Вопросы атомной науки и техники. — 2001. — № 5. — С. 172-173. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS number: 29.27.Fh http://dspace.nbuv.gov.ua/handle/123456789/79012 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We estimated a minimum radius of a beam under given normalized emittance and a minimum emittance of proton and electron beams. We obtained the simple expression for a minimum radius of a beam xmin = En/1 rad and the value of the minimum for normalized emittance for proton and electron beams En,1 ~ 0.01 cm·mrad and En,2 ~ (0.01÷1) cm·mrad respectively.
format Article
author Khoruzhiy, V.M.
spellingShingle Khoruzhiy, V.M.
Study of ultrarelativistic beam emittance
Вопросы атомной науки и техники
author_facet Khoruzhiy, V.M.
author_sort Khoruzhiy, V.M.
title Study of ultrarelativistic beam emittance
title_short Study of ultrarelativistic beam emittance
title_full Study of ultrarelativistic beam emittance
title_fullStr Study of ultrarelativistic beam emittance
title_full_unstemmed Study of ultrarelativistic beam emittance
title_sort study of ultrarelativistic beam emittance
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/79012
citation_txt Study of ultrarelativistic beam emittance / V.M. Khoruzhiy // Вопросы атомной науки и техники. — 2001. — № 5. — С. 172-173. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT khoruzhiyvm studyofultrarelativisticbeamemittance
first_indexed 2025-07-06T03:08:21Z
last_indexed 2025-07-06T03:08:21Z
_version_ 1836865345152876544
fulltext STUDY OF ULTRARELATIVISTIC BEAM EMITTANCE V.M. Khoruzhiy NSC KIP, Kharkov, Ukraine e-mail: khoruzhiy@ kipt.kharkov.ua We estimated a minimum radius of a beam under given normalized emittance and a minimum emittance of proton and electron beams. We obtained the simple expression for a minimum radius of a beam min nх Е= /1 rad and the value of the minimum for normalized emittance for proton and electron beams ,1nЕ : 0.01 cm·mrad and ,2nЕ : (0.01 ÷ 1) cm·mrad respectively. PACS number: 29.27.Fh We considered charge particle beams with accelera- tion duration τ in the linac which is more than a typical relaxation time 0τ (the equilibrium state due to close collision). In this case the beam can be characterized by a certain value of temperature 0T . Our estimation for most of proton beams in resonance linacs 0τ = ppτ ~1 s. Practically this means the existence of a stationary beam temperature at the next stage of acceleration – circular accelerators with a minimum output energy ~ 10 GeV. The stationary electron beam temperature takes place significantly earlier. We considered properties of such charge particle beams. Expression for the total particle velocity β Σ is 2β Σ = 2β + 2 .mβ ⊥ - 2β 2 .mβ ⊥ (1) where β Σ , β are the normalized total and longitudinal velocities in a laboratory coordinate system respective- ly, mβ ⊥ is the transversal normalized velocity in a moving system of coordinates. From (1) resulting is the expression for the transversal normalized velocity in the laboratory system of coordinates β ⊥ = mβ ⊥ / γ (2) where γ =1/ 21 β− . Then the maximal value of the transversal velocity for given γ is maxβ ⊥ =1/ γ (3) For ultrarelativistic beams we have the expression 1- β = 1, then the maximum value of divergence 'x =dx/dz= maxβ ⊥ / β practically coincides with the value maxβ ⊥ (x, z are transversal and longitudinal coordinates respectively). Basis for any emittance definition [1, 2] is the inte- gral invariant xdxdp∫ = const, where х, xp are the transversal coordinate and momentum of a particle. If the emittance shape has a canonical form of ellipse, i.e. its semiaxis coincides with the coordinate axis, then tak- ing into account (2) it is easy to determine the expres- sion ( )x m xp = ( )x l xp (4) The indexes l and m are applied to laboratory and mov- ing systems respectively. From expression (4) it follows that the integral invariant xdxdp∫ is the relativistic in- variant too. If the shape of the normalized emiittance нЕ is as an ellipse of a canonical form, then нЕ = 'xx xβ γ β γ⊥= (5) From expression (5) taking into account (3) it fol- lows that the minimum radius of ultrarelativistic beams min нх Е= /1rad. (6) Thus, the minimum radius of ultrarelativistic beams (6) takes a place under acceleration of ultrarelativistic beams with a constant value of emittance нЕ , an effort to produce the beam with the radius minх x< will cause losses of charge particles. Normalized emittances of ultrarelativistic proton ( γ ~80) [3] and electron ( γ ~4000) [4] beams in resonance accelerators are нЕ ~100 сm·mrad, then from (6) results that minx : 0.1 cm. The output transversal normalized velocities of the electron beam for the linac LU-2 [4] are ' 410x β − ⊥ ≤; , the value maxβ ⊥ = 2.5·10-4 for the output beam energy W = 2 GeV. Expression (2-6) are valid under low energies too, it enables to estimate the minimum emiittance from the gun. From expression (6) results that the estimation of a minimum emittance as far as possible is connected with the minimum of beam radius as far as possible. The minimum of beam radius can be determined using the quantum mechanics limitation for a transversal dimen- sion of the wave packet [5]. For a proton beam this min- imum is minх⊥ : 10-5 сm, for an electron beam it is minх⊥ : (10-3÷10-5) сm. Then from (6) we can estimate as far as possible the minimum of a normalized emit- tance. For a proton beam from the gun it is .minнЕ : 0.01 cm·mrad and for electron beam it is .minнЕ : (0.01÷1) cm·mrad. Most of real emittance values for proton and elec- tron beams from the gun are higher than the minimum ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 172-173. 172 one by an order of magnitude at least. Thus, we estimat- ed the minimum of beam radius as far as possible (6) for the given value of a normalized emittance and, next, the minimum emittance as far as possible for proton and electron beams for the given minimum of beam radius as far as possible. REFERENCES 1.I.M.Kapchinsky. Charge particle dynamics in linear resonance accelerators. Мoscow: Atomizdat, 1966 (in Russian). 2.V.M.Khoruzhiy et al. About multi-charge ion beam emittance // Voprosy Atomnoj Nauki i Tekhniki. Ser. Tehnika fizicheskogo ehksperimenta (19). 1984, v. 2, p. 58-59 (in Russian). 3.E.G.Komar. Basis of acceleration technique. Moscow: Atomizdat, 1975, 322 p. (in Russian) 4.V.I.Artemov, G.K.Demyanenko, N.A.Kovalenko, F.A.Peev. Development of focusing system for LU-2 linac // Voprosy Atomnoj Nauki i Tekhniki, seriya: Fizika Vysokikh Energij (1). 1972, v. 1, p. 64. (in Rus- sian) 5.A.M.Shenderovich. About dynamics and formation of beams in linacs // Zhournal Tekhnicheskoj Fiziki. 1983, v. 53, # 6, p. 1078-1081 (in Russian). ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 172-173. 173