CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode

A new nuclear method CPNA (complex pulsed neutron analysis) for detection of explosive substance (ES) is suggested. The essence of the method is the following. Information on ES presence can be obtained from analysis of energy spectra of γ-quanta produced as a result of nuclear reactions of neutro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Gavrish, Yu.N., Sidorov, A.V, Fialkovsky, A.M.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79065
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode / Yu.N. Gavrish, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 175-177. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79065
record_format dspace
spelling irk-123456789-790652015-03-26T03:01:47Z CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode Gavrish, Yu.N. Sidorov, A.V Fialkovsky, A.M. Применение ускоренных пучков A new nuclear method CPNA (complex pulsed neutron analysis) for detection of explosive substance (ES) is suggested. The essence of the method is the following. Information on ES presence can be obtained from analysis of energy spectra of γ-quanta produced as a result of nuclear reactions of neutron pulse radiation interaction with nuclei of characteristic elements constituents of ES. Based on optimizing calculations of neutron radiation parameters to provide most effective detection of ES, a batch-pulse operating mode of the hydrogen ion accelerator has been suggested. Запропоновано новий ядерно-фізичний метод виявлення вибухових речовин (ВР). Інформація про наявність ВР може бути отримана з аналізу енергетичних спектрів гамма-випромінювання, отриманих у результаті ядерних реакцій взаємодії імпульсного періодичного нейтронного випромінювання з ядрами характерних елементів, що входять до складу ВР. На підставі розрахунків оптимізації параметрів нейтронного випромінювання для ефективного виявлення вибухових речовин запропоновано використовувати пакетно-імпульсний режим роботи прискорювача іонів водню. Предложен новый ядерно-физический метод обнаружения взрывчатых веществ (ВВ). Информация о наличии ВВ может быть получена из анализа энергетических спектров гамма-излучения, образуемых в результате ядерных реакций взаимодействия импульсного периодического нейтронного излучения с ядрами характерных элементов, входящих в состав ВВ. На основании расчетов оптимизации параметров нейтронного излучения для эффективного обнаружения взрывчатых веществ предложено использовать пакетно-импульсный режим работы ускорителя ионов водорода. 2004 Article CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode / Yu.N. Gavrish, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 175-177. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/79065 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускоренных пучков
Применение ускоренных пучков
spellingShingle Применение ускоренных пучков
Применение ускоренных пучков
Gavrish, Yu.N.
Sidorov, A.V
Fialkovsky, A.M.
CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode
Вопросы атомной науки и техники
description A new nuclear method CPNA (complex pulsed neutron analysis) for detection of explosive substance (ES) is suggested. The essence of the method is the following. Information on ES presence can be obtained from analysis of energy spectra of γ-quanta produced as a result of nuclear reactions of neutron pulse radiation interaction with nuclei of characteristic elements constituents of ES. Based on optimizing calculations of neutron radiation parameters to provide most effective detection of ES, a batch-pulse operating mode of the hydrogen ion accelerator has been suggested.
format Article
author Gavrish, Yu.N.
Sidorov, A.V
Fialkovsky, A.M.
author_facet Gavrish, Yu.N.
Sidorov, A.V
Fialkovsky, A.M.
author_sort Gavrish, Yu.N.
title CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode
title_short CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode
title_full CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode
title_fullStr CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode
title_full_unstemmed CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode
title_sort cpna-method for es detection using hydrogen ion accelerators operating in batch-pulse mode
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Применение ускоренных пучков
url http://dspace.nbuv.gov.ua/handle/123456789/79065
citation_txt CPNA-method for ES detection using hydrogen ion accelerators operating in batch-pulse mode / Yu.N. Gavrish, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 175-177. — Бібліогр.: 2 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gavrishyun cpnamethodforesdetectionusinghydrogenionacceleratorsoperatinginbatchpulsemode
AT sidorovav cpnamethodforesdetectionusinghydrogenionacceleratorsoperatinginbatchpulsemode
AT fialkovskyam cpnamethodforesdetectionusinghydrogenionacceleratorsoperatinginbatchpulsemode
first_indexed 2025-07-06T03:10:17Z
last_indexed 2025-07-06T03:10:17Z
_version_ 1836865466399719424
fulltext CPNA-METHOD FOR ES DETECTION USING HYDROGEN ION ACCELERATORS OPERATING IN BATCH-PULSE MODE Yu.N. Gavrish, A.V. Sidorov, A.M. Fialkovsky The Scientific Research Institute of Electrophysical Apparatus, Scientific Production Complex of Linear Accelerators and Cyclotrons, Saint-Petersburg, Russia; npkluts@niiefa.spb.su A new nuclear method CPNA (complex pulsed neutron analysis) for detection of explosive substance (ES) is suggested. The essence of the method is the following. Information on ES presence can be obtained from analysis of energy spectra of γ-quanta produced as a result of nuclear reactions of neutron pulse radiation interaction with nuclei of characteristic elements constituents of ES. Based on optimizing calculations of neutron radiation parameters to provide most effective detection of ES, a batch-pulse operating mode of the hydrogen ion accelerator has been sug- gested. PACS: 29.17.+w INTRODUCTION The problem of the detection of explosive sub- stances (ES) is currently central in the context of in- creasing number and variety of forms of terrorist acts assassinated in many regions and countries all over the world, Russia included. Especially dangerous is use of ES at hijacking and in crowded places. To fight success- fully against these crimes, corresponding services should be equipped with effective technical means for remote detection of masked ES. Previously, the problem of ES detection consisted in the search of metallic shells of grenades or mines made of traditional explosive materials, such as dynamite, trinitro- toluene, etc. At present, the problem is much more so- phisticated because of application of non-shell ES, for ex- ample, on the basis of plastic explosive charges of C-4, Semtex or Detasheet type. These materials are far beyond dynamite and trinitrotoluene in destructive effect, and they can be produced as plates about 5 mm in thickness (“sheet” ES) practically of any shape. Nuclear methods are highly promising for detection of explosive substances as the majority of ES offers unique combination of high concentrations of carbon, nitrogen and oxygen atoms. High concentration of nitro- gen in an inspected object is an indication of probable presence of ES, and high concentrations of carbon, ni- trogen and oxygen practically unambiguously testify ES presence. It should be emphasized that only nuclear methods allow one to most effectively detect non-shell plastic explosives and masked ES. Only neutron-radia- tion method for detection of high nitrogen concentration (the TNA method) has been implemented in practice; unfortunately, experience has demonstrated its unallow- able high level of false alarms. Nuclear methods apply- ing fast neutrons as the probing radiation are considered most promising. The Pulsed Fast Neutron Analysis (the PFNA method) provides maximum sensitivity of ES de- tection. A great number of methods and means for ES de- tection have been suggested to date. However, at present, there is no such a method that can provide 100% probability of ES detection. Therefore, new meth- ods are still being devised including nuclear ones offer- ing higher efficiency of ES detection. It should be em- phasized that only nuclear methods are effective in de- tection of masked ES. CPNA-METHOD FOR ES DETECTION We analyzed the experience gained when devising methods and creating means for ES detection taking into account the potentialities of modern spectrometric appa- ratus, which makes possible measurements of photon energy distributions at high background with a high lev- el of reliability. As a result a new method [1] has been suggested the essence of which is the following (fig.1). Fig.1. Time chart of neutron source: t1 - time of mea- surements of γ-radiation produced as a result of inelas- tic scattering of fast neutrons by nuclei of ES typical el- ements (nitrogen, oxygen, carbon); td - time delay due to neutron thermalization; t2 - time of measurements of γ-radiation produced as a result of thermal neutrons capture with nitrogen nuclei; t3 - time of measurements of γ-radiation of short-lived radionuclide decay (oxy- gen, chlorine, etc.); tFS - time of fission substances mea- surements; T - neutron pulse repetition rate Information on ES presence can be obtained from analysis of energy spectra of γ-quanta produced as a re- sult of nuclear reactions of neutron pulse periodic radia- tion interaction with nuclei of characteristic elements- constituents of ES. During pulses of neutron radiation, energy spectrum of γ-quanta produced as a result of re- actions of inelastic scattering of fast neutrons by nuclei of nitrogen, oxygen and carbon is measured. Between the pulses, are measured energy characteristics of γ- quanta produced as a result of reactions of neutrons’ ra- diation capture with nitrogen nuclei (14N(n,γ)15N) and energy spectra of γ-quanta of short-lived radionuclides’ decay. Short-lived radionuclides are formed under neu- trons’ interaction with oxygen nuclei (16O(n, p) 16N(β-,γ) , T1/2=7,13 and chlorine (an impurity used at production of new ES) 37Cl(n,α)34P(β-,γ) T1/2=12,4 and 37Cl(n, γ)38m- Cl T1/2=0,71c). Table 1. Energies of characteristic γ-quanta for some elements Element γ-quanta energy, MeV 16О 6.13 14N 5.11; 2.31; 1.63 12С 4.44 ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.175-177. 175 mailto:npkluts@niiefa.spb.su 27Al 3.00; 2.50; 2.30; 2.21; 1.72; 1.01; 0.84 56Fe 2.60; 2.27; 2.11; 1.81; 1.24; 1.04; 0.85 35,37Cl 3.16; 3.10; 2.65; 2.35; 1.99; 1.76; 1.22;1.19 Any element can be detected from characteristic γ- quanta produced as a result of inelastic scattering of neutrons. For example, Table 1 demonstrates energies of characteristic γ-quanta produced under inelastic scat- tering of 3…12 MeV neutrons by nuclei of some ele- ments. As a result of radiation capture of thermal neutrons with nuclei of 14N (14N (n, γ)15N), 10.83 MeV γ-quanta are produced. The content of 14N isotope in a natural mixture is 99.63%. Reaction cross-section of neutrons’ radiation capture with nitrogen nuclei is smaller with higher energy; for thermal neutrons it is 75 mb. Radia- tion spectrum of 15N-daughter nucleus has a γ-line with an energy of 10,83 MeV and intensity of 14% per one captured neutron. It should be noted that this energy is one of the highest energies of γ-quanta produced under radiation capture of thermal neutrons with different nu- clei. Activation analysis holds a special position among modern analytical methods used for determination of el- ement composition of substances as it allows one to ob- tain results appreciably surpassing those obtained with methods of analytical chemistry in sensitivity, accuracy and rapidness. Activation analysis, which can use prac- tically all the types of nuclear interactions, is performed in two stages. First-irradiation of an object with a flow of activating radiation and then-study of characteristics of the induced activity The majority of procedures for measuring the induced activity are based on spectrome- try of γ-quanta using scintillation or semiconductor spectrometers. As a result of activating radiation inter- action with nuclei of various elements, a large amount of radionuclides is produced, as a rule, including short- lived ones. Under all other conditions being equal, larg- er measured friendly signal corresponds to lower period of half-decay. Half-decay classification of nuclides in the neutron- activation analysis depends on conditions of the experi- ment, in particular, time parameters of the source of ra- diation and time of measurement – tm. In the general case, as short-lived nuclides are considered those for which λ tm >1, where λ is the decay constant related to the half-decay period via ratio λ=Ln (2)/T1/2. Nowadays, the nuclides which half-decay period is within the range of 10-3 with <T1/2 <102s are considered as short-lived ones. The use of pulse-periodic source allows the applica- tion of cyclic method of neutron-activation analysis from short-lived isotopes. The essence of the method consists in multiple repetition of irradiation-measure- ment cycle that provides appreciable advantages, espe- cially, when analysis is performed from short-lived nu- clides: statistical error of measurements is significantly reduced, sensitivity and accuracy of the analysis are much more higher. The following time mode of the analysis is suggested. An object under inspection is irra- diated with a pulse flow of neutrons. Between pulses the induced activity is measured. Then irradiation–measure- ment cycles are repeated. Table 2 presents some elements, which can be de- tected with the neutron-activation analysis from short- lived isotopes at energy of neutron radiation up to 12 MeV [2]. Only elements being of interest for ES de- tection are shown (oxygen and chlorine, used at produc- tion of modern explosive substances) and precious met- als: silver, gold and platinum. Table 2 Z Reaction Т1/2, с Eγ, MeV (relative in- tensity, %) O O16(n,p)N16 7,13 7,122(5); 6,134(69) Cl Cl37(n,γ)Cl38m 0,71 0,671(99,9) Cl Cl37(n,α)P34 12,4 4,00(0,2); 2,127(15) Ag Ag109(n,γ)Ag110 24.4 0.658(5,6) Au Au197(n,n’)Au197 7,2 0,278(72,5); 0,13(3,2) Pt Pt198(n,γ)Pt199m 14 0.393(83), 0.032(5) Detailed consideration of the activation analysis from short-lived isotopes is given in [2]. NEUTRON SOURCE Various types of nuclear source can be used for ES detection. Neutron sources based on the use of radioac- tive nuclides are simplest in design and application. The intensity attainable when using a radioactive source is about 109 n/s. The source occupies quite a small volume (about 1litre). The main drawback is that isotropic neu- trons are emitted in rather wide range of energies. The neutron generator is relatively small, but power supply and cooling systems make their enlarging contri- butions to its volume. Neutron generators can operate both in pulse and continuous modes. Angular distribu- tion of neutrons is isotropic, and that is a drawback of the source. Another drawback is short time of tritium targets running (100 hours). In this connection there ap- pears a problem of spent tubes or interchangeable tar- gets disposal. The advantage is that the source can be “switched off”. Neutron sources on the basis of charged particle ac- celerators are the most complicated devices. The accel- erator offer a possibility to produce neutrons in a wide range of energies at a relatively low energy spread, which is its serious advantage. The source anisotropy increases the neutrons’ escape predominantly in the for- ward direction. The source can be “switched off’, which is also significant merit compared to radioactive source. Thus it has been found out that linear accelerators of hydrogen ions offer the best capabilities for ES detec- tion. An example of such an accelerator is a radio fre- quency accelerator of hydrogen ions designed in NPK LUTS, the D.V.Efremov Institute (Fig.2). 176 Fig.2. General view of RF accelerator of hydrogen ions To determine optimal energy parameters of the neu- tron radiation source, interaction of neutrons with differ- ent energies with ES (trinitrotoluene C7H5O6N3) has been studied. Calculations of γ-quanta produced as a re- sult of neutrons’ inelastic scattering by N, C and O nu- clei have demonstrated that γ-quanta with energies: E y =1,64; 2,31; 5,11; 7,03 MeV offer the largest yield for nitrogen, with Ey = 2,74; 6,13; 6,92 7,12 – for oxy- gen and with E y = 4,44 and 9,64 MeV – for carbon. Op- timal energy of the pulse periodic neutron source in- tended for ES detection using (n,n’) reactions is calcu- lated such that cross-section of produced γ-quanta for specified lines is maximum and amounts to 8-12 MeV. The 16O(n,p)16N reaction cross-section has its maximum at 12 MeV energy of neutrons. Thus we obtain that 10- 12 MeV energy of the pulse- periodic neutron source is optimal for ES detection by the suggested method. Time parameters of the pulse - periodic source of neutrons have been obtained by minimizing the time for ES analysis at a specified ES detection limit of 10 g of trotyl. Simulation of processes of ES-neutrons interac- tion has shown that optimal time parameters in case of ES detection by γ-quanta produced as a result of neu- trons’ inelastic scattering by N, O and C nuclei are: τ∼ 1 µs (is defined such that the detector system registers no more than one quanta, otherwise, the information on amplitude will be incorrect because of superposition of two or more events); time interval between pulses is ∼3- 5 µs, the time necessary for generation of spectrometric signal when registering γ-quanta with a CsI (TI)-based scintillation detector with decay time of 1 µs. To attain maximum sensitivity of the neutron-activa- tion analysis from short-lived isotopes, the dependence of number of counts on pulsed time parameters: pulse dura- tion and pulse repetition rate has been studied. It is shown that the accelerator current pulse duration of tr ∼100 µs at a pulse repetition rate of v<1000Hz corresponds to the optimal mode of the neutron-activation analysis from short-lived isotopes for ES detection. Taking into account the fact that different time pa- rameters correspond to the optimal modes of the sources used for the analysis from non-elastic scattering of fast neutrons and the neutron-activation analysis of short- lived isotopes, the batch-pulse operating mode of the pulse neutron source is suggested. CONCLUSIONS As a result of our intensive efforts we have suggest- ed a new high promising method for ES detection being an advantageous combination of already known nuclear methods. Main advantages of the method are: • higher reliability of ES detection due to the use of three independent channels, that is PFNA (Pulsed Fast Neutron Analysis), PTNA (Pulsed Thermal Neutron Analysis) and short-lived radionuclide decay; • may be detection of fissionable substances; • may be detection of chlorine, which is a compo- nent of some explosive substances; • detection of other substances, such as vegetative drugs, gold, platinum, silver, etc. which are of interest for customs inspection. Contraband Detection Technological Complex is de- signed to detect explosives, fission materials, and in fu- ture vegetable drugs by .NPK LUTS (Scientific Produc- tion Complex of Linear Accelerators and Cyclotrons). REFERENCES 1. M.F. Vorogushin, Yu.N. Gavrish, A.V. Sidorov, A.M. Fialkovsky. Method of detection of explosives and fission products. Russian patent № 2150105. Priority since May 26, 1999 (in Russian). 2. M.F.Borogushin, Yu.N.Gavrish, A.V.Sidorov, A.M.Fialkovsky. Neutron-activation analysis from short-lived radionuclides on the basis of linear ion accelerator: Preprint П-0936. M.: “TSNIIatomin- form”, 1995. CPNA-МЕТОД ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ C ИСПОЛЬЗОВАНИЕМ ПАКЕТНО-ИМПУЛЬСНОГО РЕЖИМА РАБОТЫ УСКОРИТЕЛЯ ИОНОВ ВОДОРОДА Ю.Н. Гавриш, А.М. Сидоров, А.М. Фиалковский Предложен новый ядерно-физический метод обнаружения взрывчатых веществ (ВВ). Информация о наличии ВВ мо- жет быть получена из анализа энергетических спектров гамма-излучения, образуемых в результате ядерных реакций взаимодействия импульсного периодического нейтронного излучения с ядрами характерных элементов, входящих в со- став ВВ. На основании расчетов оптимизации параметров нейтронного излучения для эффективного обнаружения взрывчатых веществ предложено использовать пакетно-импульсный режим работы ускорителя ионов водорода. CPNA-МЕТОД ВИЯВЛЕННЯ ВИБУХОВИХ РЕЧОВИН З ВИКОРИСТАННЯМ ПАКЕТНО-ІМПУЛЬСНОГО РЕЖИМУ РОБОТИ ПРИСКОРЮВАЧА ІОНІВ ВОДНЮ Ю.Н. Гавриш, А.М. Сидоров, А.М. Фіалковський Запропоновано новий ядерно-фізичний метод виявлення вибухових речовин (ВР). Інформація про наявність ВР може бути отримана з аналізу енергетичних спектрів гамма-випромінювання, отриманих у результаті ядерних реакцій взаємодії імпульсного періодичного нейтронного випромінювання з ядрами характерних елементів, що входять до ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.175-177. 177 складу ВР. На підставі розрахунків оптимізації параметрів нейтронного випромінювання для ефективного виявлення вибухових речовин запропоновано використовувати пакетно-імпульсний режим роботи прискорювача іонів водню. 178 Introduction Conclusions пакетно-импульсного режима работы ускорителя ионов водорода Ю.Н. Гавриш, А.М. Сидоров, А.М. Фіалковський