Transition amplitude for free massless particle

The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Zima, V.G., Fedoruk, S.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79423
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79423
record_format dspace
spelling irk-123456789-794232015-04-02T03:01:55Z Transition amplitude for free massless particle Zima, V.G. Fedoruk, S.A. Quantum field theory The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model is calculated and it is shown, that it has the first rank. The expression for transition amplitude is transformed to the form of amplitude for a system with only the first class constraints. It is shown, that complexification of some phase variable results in the Gupta-Bleuler formalism. In these frameworks it is considered quantization procedure. 2001 Article Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 0460G, 0370 http://dspace.nbuv.gov.ua/handle/123456789/79423 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Quantum field theory
Quantum field theory
spellingShingle Quantum field theory
Quantum field theory
Zima, V.G.
Fedoruk, S.A.
Transition amplitude for free massless particle
Вопросы атомной науки и техники
description The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model is calculated and it is shown, that it has the first rank. The expression for transition amplitude is transformed to the form of amplitude for a system with only the first class constraints. It is shown, that complexification of some phase variable results in the Gupta-Bleuler formalism. In these frameworks it is considered quantization procedure.
format Article
author Zima, V.G.
Fedoruk, S.A.
author_facet Zima, V.G.
Fedoruk, S.A.
author_sort Zima, V.G.
title Transition amplitude for free massless particle
title_short Transition amplitude for free massless particle
title_full Transition amplitude for free massless particle
title_fullStr Transition amplitude for free massless particle
title_full_unstemmed Transition amplitude for free massless particle
title_sort transition amplitude for free massless particle
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
topic_facet Quantum field theory
url http://dspace.nbuv.gov.ua/handle/123456789/79423
citation_txt Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT zimavg transitionamplitudeforfreemasslessparticle
AT fedoruksa transitionamplitudeforfreemasslessparticle
first_indexed 2023-10-18T19:18:39Z
last_indexed 2023-10-18T19:18:39Z
_version_ 1796146570268246016