Geometric attractor of an electron beam passing through a crystal
The Lemmlein algorithm assigns a cyclic interaction of a mathematical point with other (n+1) points of the n - dimensional Euclidean space. In this paper generalization A of the Lemmlein algorithm for an arbitrary number of points m situated in the n - dimensional Riemann space is proposed. Algorith...
Збережено в:
Дата: | 2001 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/79473 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Geometric attractor of an electron beam passing through a crystal / A.M. Gurin // Вопросы атомной науки и техники. — 2001. — № 6. — С. 147-148. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The Lemmlein algorithm assigns a cyclic interaction of a mathematical point with other (n+1) points of the n - dimensional Euclidean space. In this paper generalization A of the Lemmlein algorithm for an arbitrary number of points m situated in the n - dimensional Riemann space is proposed. Algorithm A generates a Markovian chain consisting of the finite number of combinatorially different strongly convergent attractors. Algorithm A is generalized to describe the interaction of mass points, e.g., the motion of electrons in the real crystal medium. The strong convergence of the attractors provides stability of the electron trajectories in the vicinity of an attractor in the unit cell of the crystal after electron scattering at the crystal defects. |
---|