Kinetic equations for open quantum system in the occupation number representation
Master equation for density matrix of an open many–particle system is derived in the occupation number representation. The Born approximation with respect to system–bath interaction is utilized and the fast relaxation within the system is assumed to be fulfiled. The reduction of a linear master equa...
Збережено в:
Дата: | 2001 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/80027 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Kinetic equations for open quantum system in the occupation number representation / E.G. Petrov // Вопросы атомной науки и техники. — 2001. — № 6. — С. 261-264. — Бібліогр.: 11 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Master equation for density matrix of an open many–particle system is derived in the occupation number representation. The Born approximation with respect to system–bath interaction is utilized and the fast relaxation within the system is assumed to be fulfiled. The reduction of a linear master equation to a nonlinear set of kinetic equations for one–particle distribution functions is carried out at the condition of strong particle–particle interaction. As an example, the procedure of derivation of kinetic equations for description of electron transfer through specific molecular nanostructures like molecular wires is demonstrated with taking into consideration the strong Coulomb repulsion between the transferred electrons. |
---|