Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C

Two titanium alloys, the α+β Ti6Al4V and the α phase Ti5Al2.5Sn alloy, have been irradiated at 150°C with neutrons, in the reactor of the Atomic Energy Research Institute, in Budapest and with 590 MeV protons in the PIREX facility of the Paul Scherrer Institute, in Switzerland, to doses of the order...

Full description

Saved in:
Bibliographic Details
Date:2005
Main Author: Marmy, P.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/80400
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°c / P. Marmy // Вопросы атомной науки и техники. — 2005. — № 3. — С. 18-23. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80400
record_format dspace
spelling irk-123456789-804002015-04-18T03:01:23Z Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C Marmy, P. Физика радиационных повреждений и явлений в твердых телах Two titanium alloys, the α+β Ti6Al4V and the α phase Ti5Al2.5Sn alloy, have been irradiated at 150°C with neutrons, in the reactor of the Atomic Energy Research Institute, in Budapest and with 590 MeV protons in the PIREX facility of the Paul Scherrer Institute, in Switzerland, to doses of the order of 0.15 dpa. The proton irradiation induced hydrogen as a product from spallation reactions. Some of the neutron irradiated specimens were previously loaded with 150 wppm hydrogen. The tensile and fracture toughness properties have been analyzed as a function of the measured hydrogen content. At low levels, hydrogen is not influencing significantly the tensile properties. The effect of irradiation on ductility and strength is more pronounced in the α+β Ti6Al4V, due to radiation induced phase instabilities. At a test temperature of 150°C, hydrogen levels up to 150 wppm have moderate effect on fracture toughness, in the unirradiated condition. For the irradiated specimens in both alloys, increasing the hydrogen content decreases the fracture toughness.The fracture toughness after irradiation is strongly reduced at room temperature, in both alloys. Два титанові сплави α+β Ті6A14V та α-фаза Ti5A12.5Sn були опромінені при 150ºС нейтронами в реакторі дослідницького Інституту ядерної енергії в Будапешті та 590 МеВ протонами на установці ПІРЕКС в Швейцарії до доз порядку 0.15 зна. Опромінення протонами зумовлює утворення водню як продукта розщеплення. Декілька опромінених нейтронами зразків були попередньо навантажені 150 wppm водню. Міцність на розтяг та в`язкість руйнування були проаналізовані як функція вмісту водню. При низьких рівнях водень не має суттєвого впливу на міцність на розтяг. Вплив опромінення на пластичність та на міцність більш виразний у сплаві α+β Ті6A14V внаслідок радіаційно-обумовленої фазової нестабільності. При температурі випробування в 150ºС водень у кількості 150wppm має помірний вплив на в`язкість руйнування в неопроміненному стані. Для опроміненних зразків в двох сталях зростання вмісту водню знижує в`язкість руйнування. В`язкість руйнування сильно зменьшується при кімнатній температурі в обох сплавах. Два титановых сплава α+β Ті6A14V и α-фаза Ti5A12.5Sn были облучены при 150ºС нейтронами в реакторе исследовательского Института ядерной энергии в Будапеште и 590 МэВ протонами на установке ПИРЕКС в Институте Поль- Шеррер, в Швейцарии до доз порядка 0.15 сна. Облучение протонами обусловливает образование водорода как продукта реакций расщепления. Несколько облученных нейтронами образцов были предварительно нагружены 150 wppm водорода. Прочность на растяжение и вязкость разрушения были проанализированы как функция содержания водорода. При низких уровнях водород не оказывает существенного влияния на прочность на растяжение. Влияние облучения на пластичность и прочность более выражено в α+β Ті6A14V вследствие радиационно-обусловленной фазовой нестабиль¬ ности. При температуре испытания в 150ºС водород в количестве 150 wppm оказывает умеренное влияние на вязкость разрушения в необлученном состоянии. Для облученных образцов в двух сталях увеличение содержания водорода понижает вязкость разрушения. Вязкость разрушения после облучения сильно уменьшается при комнатной температуре в обоих сплавах. 2005 Article Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°c / P. Marmy // Вопросы атомной науки и техники. — 2005. — № 3. — С. 18-23. — Бібліогр.: 12 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/80400 621.039 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
spellingShingle Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
Marmy, P.
Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C
Вопросы атомной науки и техники
description Two titanium alloys, the α+β Ti6Al4V and the α phase Ti5Al2.5Sn alloy, have been irradiated at 150°C with neutrons, in the reactor of the Atomic Energy Research Institute, in Budapest and with 590 MeV protons in the PIREX facility of the Paul Scherrer Institute, in Switzerland, to doses of the order of 0.15 dpa. The proton irradiation induced hydrogen as a product from spallation reactions. Some of the neutron irradiated specimens were previously loaded with 150 wppm hydrogen. The tensile and fracture toughness properties have been analyzed as a function of the measured hydrogen content. At low levels, hydrogen is not influencing significantly the tensile properties. The effect of irradiation on ductility and strength is more pronounced in the α+β Ti6Al4V, due to radiation induced phase instabilities. At a test temperature of 150°C, hydrogen levels up to 150 wppm have moderate effect on fracture toughness, in the unirradiated condition. For the irradiated specimens in both alloys, increasing the hydrogen content decreases the fracture toughness.The fracture toughness after irradiation is strongly reduced at room temperature, in both alloys.
format Article
author Marmy, P.
author_facet Marmy, P.
author_sort Marmy, P.
title Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C
title_short Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C
title_full Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C
title_fullStr Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C
title_full_unstemmed Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°C
title_sort fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°c
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Физика радиационных повреждений и явлений в твердых телах
url http://dspace.nbuv.gov.ua/handle/123456789/80400
citation_txt Fracture toughness and tensile properties of two titanium alloys befor and after proton and neutron irradiations at 150°c / P. Marmy // Вопросы атомной науки и техники. — 2005. — № 3. — С. 18-23. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT marmyp fracturetoughnessandtensilepropertiesoftwotitaniumalloysbeforandafterprotonandneutronirradiationsat150c
first_indexed 2025-07-06T04:21:26Z
last_indexed 2025-07-06T04:21:26Z
_version_ 1836869943162830848
fulltext УДК 621.039 FRACTURE TOUGHNESS AND TENSILE PROPERTIES OF TWO TITANIUM ALLOYS BEFORE AND AFTER PROTON AND NEUTRON IRRADIATIONS AT 150°C P. Marmy Centre de Recherche en Physique des Plasmas Technologie de la Fusion Association Euratom - Confédération Suisse, CH-5232 VILLIGEN-PSI Two titanium alloys, the α+β Ti6Al4V and the α phase Ti5Al2.5Sn alloy, have been irradiated at 150°C with neutrons, in the reactor of the Atomic Energy Research Institute, in Budapest and with 590 MeV protons in the PIREX facility of the Paul Scherrer Institute, in Switzerland, to doses of the order of 0.15 dpa. The proton irradia­ tion induced hydrogen as a product from spallation reactions. Some of the neutron irradiated specimens were previ­ ously loaded with 150 wppm hydrogen. The tensile and fracture toughness properties have been analyzed as a func­ tion of the measured hydrogen content. At low levels, hydrogen is not influencing significantly the tensile proper­ ties. The effect of irradiation on ductility and strength is more pronounced in the α+β Ti6Al4V, due to radiation in­ duced phase instabilities. At a test temperature of 150°C, hydrogen levels up to 150 wppm have moderate effect on fracture toughness, in the unirradiated condition. For the irradiated specimens in both alloys, increasing the hydro­ gen content decreases the fracture toughness.The fracture toughness after irradiation is strongly reduced at room temperature, in both alloys. 1. INTRODUCTION The ITER first wall modules are attached to the vac­ uum vessel by a set of four radial flexible cartridges. Due to their excellent elasticity and strength properties, titanium alloys have been proposed as materials for fab­ ricating the supports. Among a set of internationally proposed alloys, two alloys widely used in the industry, the α+β Ti6Al4V and the α-phase Ti5Al2.5Sn have been chosen as main candidates for the ITER applica­ tion. In previous works, the tensile, fatigue and fracture toughness properties have been studied before and after irradiation (see references [1-3]). The influence of hy­ drogen loading up to 400 wppm on the fracture tough­ ness properties has also been reported. The uptake of hydrogen in large quantities induces structural changes in the alloys but does not degrade much the resistance to fracture at high temperature. At room temperature a clear degradation of the unirradiated frac ture resistance takes place. The fracture toughness properties are strongly affected in both alloys, after an irradiation with neutrons at 60 and 350°C, specially when testing at room temperature [2-3]. Since the mean operating tem­ perature of the cartridges is around 150°C, a new set of experiments was necessary to check the effective degra­ dation during ITER operation. It was been decided to use two types of irradiating particles, protons and neutrons, and to center the atten­ tion onto the effects of hydrogen, since the previous work had shown that the embrittlement is mainly con­ trolled by the hydrogen content. The irradiation with high energy protons is generating hydrogen through spallation reactions, with possible detrimental effects on the properties. Because the neutrons do not generate any hydrogen, some specimens have been previously loaded with 150 wppm hydrogen. The hydrogen content has been accurately measured. The effects of proton and neutron irradiation on the tensile and fracture toughness properties are described and discussed taking particular attention to the role of hydrogen. 2. EXPERIMENTAL DETAILS Materials and as received microstructure: After hot forming to a diameter of 31.75 mm, the Ti5Al2.4Sn al­ loy has been annealed 1hr at 815°C and then air cooled. The structure consists of equiaxed grains of 20 µm. Some larger grains of about 40 µm or more also exist. Usually the larger grains contain smaller ones. A precip­ itation of an iron riched phased has been detected in the grains, both by optical and transmission microscopy. The TiFe precipitates have a size around 100 nm and are located at the grain boundaries and inside the grains. They are generated by the high iron concentration (0.36 wt%) in the alloy. After hot forming to a stock diameter of 150mm in the α+β field, the Ti6Al4V alloy has been annealed for 1.5 hr at 730 °C and then air cooled. The structure con­ sists of equiaxed α grains of about 20 µm, containing secondary α zones surrounded by β intergranular phase. The fraction volume of the β phase is around 13 %. Due to its different composition, the β phase is quite visible at the boundaries and appears as intergranular bands of 0.05 to 1 µm width. Some small quantities of residual martensite can be observed in the larger β grains No hydrides are present in the as received mi­ crostructure of both alloys [3-5].The chemical specifica­ tion is given in table 1. ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с.18-23. Specimens: The fracture toughness specimen is a mini-charpy DIN 50115 KLST with a size of 3x4x27 mm. It is labeled **C**, for easy differentiation. The pre/crack of 1mm length has been grown at the notch before the irradiation (total crack depth 2 mm), at high frequency, in a fatigue pre-test. The specimens for the neutron irradiation have been cracked after the irradia­ tion, before the test, at low frequency. The tensile speci­ men for the proton irradiation is a PIREX flat specimen with a gauge size of 4x0.34x5.5 mm [5]. It is labeled **T**. The tensile specimen for the neutron irradiation is a DIN 50125 cylindrical specimen with a geometrical gauge length of 18 mm and 3 mm diameter. It is labeled **D**. Table 1 Chemical compositions: [wt %] Al C Fe Sn Ti5Al2.5Sn 5.0 0.17 0.36 2.4 Ti6Al4V 6.08 0.0056 0.1399 - H2 N2 O2 V Others 0.0036 0.010 0.179 - <0.0060 0.0065 0.176 3.95 <0.4 Proton Irradiation : The tensile and charpy speci­ mens have been irradiated in the PIREX facility [6] where the heat deposited by the proton beam is removed by pressurized helium. The tensile flat specimens have been irradiated with a beam of 3 mm width and 4 mm height. The wobbler amplitude was ±2.5 mm, in order to distribute the protons evenly. The mini Charpy speci­ men was equipped with a central thermocouple placed into an hole that ended very close, at 1.5 mm from the pre/crack. A beam with a width of 6mm and a height of 3mm has been centered onto the specimen. It was not wobbled because only the center of the specimen had to be irradiated. In the cooling flow of pressurized helium, at 115 Nm3/hr ,30 bars and 40°C, a proton beam intensi­ ty of 7μa has been adjusted in order to get a specimen irradiation temperature of 150°C. A dosimetry evalua­ tion based on Sc46, which production cross section σ(Ti(p,x)) is estimated to 27.2 mbarn [7], has given the results listed in table 2. The specimens irradiated with the high energy protons are all in the as received condi­ tion. The materials already contain some level of hydro­ gen, as indicated in table 1. Table 2 Fluence and displacements per atom after the irradiations in PIREX SPECIMEN Fluence p/cm2 Dose dpa I25T12 5.09E+19 0.1342 I25T14 1.63E+19 0.0428 I25C55 6.18E+19 0.1628 I25C54 6.16E+19 0.1623 I14T27 2.32E+19 0.0611 I14T28 6.4E+19 0.1685 I14C53 4.96E+19 0.1308 I14C54 4.99E+19 0.1315 The high energy proton irradiation increases the hy­ drogen content by spallation reactions [8].Therefore the hydrogen concentration has been determined carefully using a method based on gas mass spectrometry [9]. The results from five specimens are indicated in table 3. Table 3 Measured hydrogen in proton irradiated samples Net 1H Sample wppm Unirradiated: N14C62 47.9 N25C77 20.4 Irradiated: I14C53 63.6 I14C54 60.7 I25C54 62.4 I25C55 53.4 I25T12 47.2 It is also interesting to note that the predicted hydro­ gen production in titanium is around 650 appm/dpa [8], which corresponds to about 14 wppm H/dpa. The irradi­ ated values of table 3 are for about 0.2 dpa. Therefore the observed rates of hydrogen deposition in alloy 14 and 25 were around 70 wppm/dpa and 150 wppm/dpa.- much higher than the prediction. The reason for this sig­ nificantly higher deposition is currently not known. Neutron Irradiation: The neutron irradiation has been performed at the Atomic Energy Research Institute in Budapest, in a VVRSZM research reactor of 10MW power. The mean flux at nominal power is 3.5x1013 n/cm2 s (E>1MeV). The neutron spectrum of the reactor is closed to a fission spectrum. The specimens have been irradiated using the rig BAGIRA, in which a flow of He/N2 gas mixture is used for temperature control. The temperature has been monitored with five thermo­ couples and was kept between 140 and 150 °C during all the experiment. A dosimetry analysis based on the radioisotope Sc46, indicates that the mean neutron flu­ ence is 1.08x1020 n/cm2. Assuming a dpa cross section in the AEKI reactor of 1420 barn ( n E>1MeV), the dose is estimated to 0.154 dpa. The specimens I14C46 and 69, I25C46 and 49, I14D40 and I25D45 are all in the as received condition. Two specimens loaded with 150 wppm hydrogen have also been irradiated (I14C38 and I25C39), together with two annealed specimens (I14C6 and I25C30). The an­ nealed specimens have an hydrogen level close to zero. 3. RESULTS AND DISCUSSION 3.1. TENSILE TESTS All tests have been conducted at the same strain rate, 2.5x10-4 s-1. To take into account the effect of specimen size, unirradiated tests have been performed with both specimen geometries. The total and uniform elongation values are similar in both geometries, whereas the re­ duction of area is clearly higher in the DIN cylindrical specimens. The yield stress and the ultimate stress are slightly higher in the DIN specimens. The Streckgrenze effect (sharp yield point) was visible in both geometries ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с. 18-23. 19 and slightly sharper in the cylindrical geometry. Figure 1 shows the effect of the proton irradiation. The α alloy is less affected by the irradiation as com­ pared to the α+β alloy. The hardening Δσ irr at 150°C and 0.06 dpa is only 14 MPa for the α alloy as compared to 150 MPa for the α+β alloy. 0 5 10 15 20 0 100 200 300 400 500 600 700 800 900 1000 Ti5Al2.5Sn T test =150°C T test = 21 °C N14T30 I14T28 N14T32 I14T27 S tre ss [M P a] Strain [%] 0 5 10 15 20 25 0 100 200 300 400 500 600 700 800 900 1000 1100 T test =150°C T test =21°C Ti6Al4V S tr es s [M P a] Strain [%] N25T21 I25T14 N25T16 I25T12 Fig. 1. Tensile curves of Ti6Al4V and Ti5Al2.5Sn before and after irradiation with protons at 150°C. I25T12, has a dose of 0.13 dpa, I25T14 has a dose of 0.04 dpa, I14T28 has a dose of 0.17 dpa and I14T27 has a dose of 0.06 dpa The hardening Δσ irr at Ttest=21°C and 0.13 dpa is clearly larger for the α+β alloy. Furthermore the Ti6Al4V tensile curves have an unstable shape with a low uniform elongation after irradiation. Although less strong in amplitude as compared to what was measured after an irradiation with neutrons at 350°C, the response observed is similar. It is probable that some phase insta­ bilities already occur after the irradiation at 150°C, after a dose of only 0.04 dpa. Figure 2 presents the effects after the irradiation with neutrons at the same temperature of 150°C. It is in­ teresting to note that for the alpha alloy, the sharp yield point in the unirradiated case is reinforced after the irra­ diation. Nevertheless the material is still able to deform homogenously and reaches a uniform elongation of 7.5%. In the Ti6Al4V, the situation is worst as indicated by the unstable deformation curve of I25D45. The uni­ form elongation is very low after irradiation, consider­ ing that most of the deformation is elastic at the stability limit. 0 5 10 15 20 0 200 400 600 800 1000 T test =150°C N25D56 I25D45 I14D40 N14D52 S tre ss [M P a] Strain [%] Fig. 2. Tensile curves of Ti6Al4V (N25D56, I25D45) and Ti5Al2.5Sn (N14D52,I14D40), irradiated with neu­ trons at 150°C to 0.154 dpa (Ttest =150°C) The irradiation dose of the proton irradiated speci­ mens is significantly less than the dose reached in the neutron irradiated specimens. Comparing figures 1 and 2, the relative hardening after irradiation appears clearly stronger in the case of the Ti6Al4V alloy, after both the proton and the neutron irradiation. Compared on a dpa base, the neutrons seem more damage effective than the protons, in terms of ductility loss. The stronger irradia­ ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с. 18-23. 20 tion hardening in the α+β alloy is probably due to the formation of irradiation induced vanadium precipitates, as shown in previous works in the same materials irradi­ ated at 350°C [1, 2].The radiation induced precipitation is temperature assisted as it does not occur after a neu­ tron irradiation at 50°C [2]. The hydrogen intake after proton irradiation is of the order of 20 to 40 wppm, as shown in table 3. Apparently this increase in the hydrogen level does not modify the tensile properties. Dynamic strain ageing has not been observed during the experiments except in the case of N14D50 and N25D56, where it was qualified as very weak. Sharp yield points have been observed at 150°C only, in both alloys before irradiation and only in the α alloy after ir­ radiation. Nevertheless it is possible that the flow insta­ bility appearing in the Ti6Al4V is hiding the sharp yield point. 3.2. FRACTURE TOUGHNESS TESTS The fracture tests have been accomplished according to the ASTM norm E813, in a three point bend fixture. All specimens have been loaded with a deformation rate of 8.33x 10-3 mm/s. The measurement of crack exten­ sion was done using the compliance method which measures the apparent elasticity of the specimen. The effective crack length is then calculated using the com­ pliance transfer relation of Jablonski [10]. For the unirradiated material, the values of JQ are very similar in both alloys. The value at RT is around 60 kJ/m2. This is in accordance with previous measure­ ments [11]. The fracture toughness increases at 150°C , to reach a value around 100 kJ/m2. The irradiated Ti5Al2.5Sn material is only slightly affected by the irra­ diation when tested at 150°C, whereas the Ti6Al4V al­ loy shows a clear reduction in the JQ value. When tested at RT both irradiated alloys show a large reduction of JQ. The data are easy to understand, if presented as a func­ tion of their hydrogen content, as shown in figures 3 and 4. As explained previously, hydrogen is already present in the material in the as received condition. It has also been loaded in a vacuum furnace or removed after an­ nealing in vacuum. The proton irradiation introduces some hydrogen (see table 2) and the neutron irradiation is not changing the initial content. 0 20 40 60 80 100 120 140 160 180 0 50 100 150 200 250 Ti6Al4V J Q [k J/ m 2 ] Hydrogen content [wppm] neutrons, 150°C protons, RT protons, 150°C Unirradiated, 150°C Unirradiated, RT Fig. 3. Fracture toughness of Ti6Al4V alloy, unirradiat­ ed, irradiated at 150°C, with protons to 0.163 dpa and neutrons to 0.154 dpa. The data are plotted as a func­ tion of their hydrogen level 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Ti5Al2.5SnJ Q [k J/ m 2 ] Hydrogen content [wppm] neutrons, 150°C protons, RT protons, 150°C unirradiated, 150°C unirradiated, RT Fig. 4. Fracture toughness of Ti5Al2.5Sn alloy, unirra­ diated, irradiated at 150°C, with protons to 0.131 dpa and neutrons to 0.154 dpa. The data are plotted as a function of their hydrogen level For the case of the α+β alloy shown in figure 3, we see that the fracture toughness of the unirradiated mate­ rial is improved, when increasing the temperature from RT to 150°C. It is also improved if the hydrogen content is decreased. Nevertheless the dependence on hydrogen content at 150°C is not strong and for the highest level of the diagram (170 wppm H), JQ remain of the order of 100 kJ/m2. This is more than the value of the as re­ ceived material at room temperature. At RT., the irradi­ ated data show more dispersion than the unirradiated data, an indication for radiation embrittlement. The pro­ ton irradiated data fit quite well the trend of the neutron irradiated data. Since the fracture toughness of the 150 wppm H loaded material is clearly lower after than be­ fore irradiation, we can argue that the damage from the irradiation and from the hydrogen are additive. The data for the alpha alloy are presented in figure 4. They show a similar behavior. At 150°C, as the hydro­ gen content increases, the fracture toughness decreases, whereas in the unirradiated material a reverse response is observed. This behavior is in fact not a consequence of the hydrogen impurity atoms but rather a conse­ quence of the microstructural changes introduced by the hydrogen charging (see report [11]). Despite the tough­ ness improvement observed at 150°C and 150 wppm H, after neutron irradiation a drastic decrease of toughness is observed. Nevertheless the value is approximately four times higher, as compared with the Ti6Al4V case. The proton irradiated data are slightly lower than the neutron irradiated data, when plotted against their hy­ drogen content (see figure 4). The lowest fracture toughness value is measured at ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с. 18-23. 21 RT, after proton irradiation. Comparing Fig.3 and 4, it seems that the Ti6Al4V data show more dependence on hydrogen level, as com­ pared to the Ti5Al2.5Sn data. It is possible that more hydrides are present in the α+β alloy. At higher temper­ atures, the hydrides are expected to be dissolved [12]. In a previous work [3], the same alloys had been ir­ radiated near room temperature and at 350°C. Using these data, figure 5 shows the behavior of JQ as a func­ tion of the irradiation temperature, for a constant level of hydrogen. Figure 5,a shows the dependence when the alloys are hydrogen free, after a vacuum annealing of 5 hours at 750°C. Figure 5,b shows the behavior of the al­ loys when they are loaded with 150 wppm hydrogen. In the case of the hydrogen free alloys, increasing the irra­ diation temperature induces embrittlement, whereas for the hydrogen loaded alloys, increasing the irradiation temperature improves the fracture toughness. This may be the result of a structural stabilizing effect of hydro­ gen. This unexpected but positive effect of hydrogen is shown here in both alloys, for relatively low doses. It is unclear whether the effect will subsist at higher doses. Figure 5,a shows the dependence when the alloys are hydrogen free, after a vacuum annealing of 5 hours at 750°C. Figure 5,b shows the behavior of the alloys when they are loaded with 150 wppm hydrogen. In the case of the hydrogen free alloys, increasing the irradia­ tion temperature induces embrittlement, whereas for the hydrogen loaded alloys, increasing the irradiation tem­ perature improves the fracture toughness. This may be the result of a structural stabilizing effect of hydrogen. This unexpected but positive effect of hydrogen is shown here in both alloys, for relatively low doses. It is unclear whether the effect will subsist at higher doses. The fractographs of the unirradiated and irradiated spec­ imens have been analyzed under the scanning electron microscope. The general aspect of all fractographs is ductile. Relatively large effects are measured in the me­ chanical test but the difference does not show up in the appearance of the fractographs. This is shown in figure 6 which compares two extreme cases, I25C54 irradiated at 150°C and showing a low JQ value and N25C95b, unirradiated and having a relatively high JQ value. 0 50 100 150 200 250 300 350 400 0 20 40 60 80 100 120 140 160 180 200 220 Hydrogen free (a) J Q [ kJ /m 2 ] T irr =T test Ti5Al2.5Sn, unirradiated Ti5Al2.5Sn, irradiated Ti6Al4V, unirradiated Ti6Al4V, irradiated 0 50 100 150 200 250 300 350 400 0 20 40 60 80 100 120 140 160 180 150 wppm H (b) J Q [ kJ /m 2 ] Tirr=Ttest Ti5Al2.5Sn, unirradiated Ti5Al2.5Sn, irradiated Ti6Al4V, unirradiated Ti6Al4V, irradiated Fig. 5. Fracture toughness of Ti5Al2.5Sn and Ti6Al4V alloys as a function of the irradiation temperature. The crack initiation fracture toughness values are shown in (a) for the hydrogen free condition and in (b) for an hydrogen lev­ el of 150 wppm. Note the reduced fracture toughness values after irradiation at elevated temperatures, for the hy­ drogen free condition ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с. 18-23. 22 Fig. 6. Fractographs of the irradiated specimen I25C54 (a) with a JQ value of 16 kJ/m2 and of the unirradiated spec­ imen N25C95b (b) with a JQ value of 64 kJ/m2, both tested at RT and showing a ductile appearance Both fractographs show a fracture surface with dim­ ples, indicating large local deformations. Careful obser­ vation, nevertheless, reveals a higher density of micro- cracks in the irradiated material. This difference is more apparent in the irradiated material tested at room tem­ perature but also applies to the unirradiated material when comparing material tested at low and high temper­ ature. 4. CONCLUSIONS Tensile and fracture toughness specimens of Ti6Al4V and Ti5Al2.5Sn have been irradiated with high energy protons to a dose between 0.04 and 0.17 dpa, at 150°C. Tensile and fracture toughness specimens of Ti6Al4V and Ti5Al2.5Sn, some of them loaded with hydrogen, have been irradiated with neutrons at 150°C, to 0.15dpa. The tensile tests seem to indicate that the Ti6Al4V is more affected by the 150°C irradiation in terms of hardening and reduction of ductility, as compared with the Ti5Al2.5Sn alloy. The irradiation at 150°C seems to induce vanadium rich precipitates in the α+β alloy, as it was shown earlier after an irradiation at 350°C. The crack initiation fracture toughness values are strongly reduced after irradiation, especially when tested at room temperature. At 150°C, the reduction in toughness is more pronounced in the Ti6Al4V alloy. Nevertheless the fractographs indicate a ductile fracture for all conditions in both materials. The fracture toughness data can be well understood, if represented as a function of their hydrogen content. Hydrogen levels up to 150 wppm have moderate effect on toughness, at a test temperature of 150°C. For the ir­ radiated specimens in both alloys, increasing the hydro­ gen content decreases the fracture toughness. The neutron and proton fracture toughness data show a consistent behaviour, when compared in relation to their associated hydrogen content. Acknowledgements: The Paul Scherrer Institute at Villigen, PSI, is sin­ cerely thanked for its logistical and technical support throughout this project. The contributions of R. Brьtsch for the SEM microscopy, F. Hegedues for the dosimetry and B.Oliver for the gas spectrometry are greatly appre­ ciated. REFERENCES 1.P. Marmy and T. Leguey. Impact of irradiation on the tensile and fatigue properties of two titanium alloys //Journal of Nuclear Materials. 2001, v. 296, p. 155–164. 2.S. Tдhtinen et al. Tensile and fracture toughness prop­ erties of unirradiated and neutron irardiated titanium al­ loys //Journal of Nuclear Materials. 2002, v.307-311, p. 416–420. 3.P. Marmy and M. Luppo. Effect of hydrogen on the fracture toughness of the titanium alloys Ti6Al4V and Ti5Al2.5Sn before and after neutron irradiation //Plas­ ma Devices and Operations. 2003, v. 11(2), p. 71–79. 4.T. Leguey et al. Microstructure of Ti5Al2.5Sn and Ti6Al4V deformed in tensile and fatigue tests //Journal of Nuclear Materials. 2002, v. 305, p. 52–59. 5.P. Marmy, Y. Ruan and M. Victoria. The Tensile and Fatigue Properties of Type 1.4914 Ferritic Steel for Fu­ sion Reactor Applications //Journal of Nuclear Materi­ als. 1991, v. 179-181, p. 697–701. 6.P. Marmy et al. PIREX II- A new irradiation facility for testing fusion first wall materials //Nuclear Instru­ ments and Methods in Physics Research. 1990, v. B47, p. 37–47. 7.F. Hegedues et al. Fracture toughness and tensile properties of the titanium alloys Ti6Al4V and Ti5Al2.5Sn before and after proton and neutron irradi­ ations at 150°C. 2004, CRPP-EPFL: Lausanne, p. 1–28. 8.S.L. Green. Calculated Radiation Damage Effects of High Energy Proton Beams //Journal of Nuclear Mate­ rials. 1984, v. 126, p. 30–37. 9.B.M. Oliver et al. Quadrupole Mass Spectrometer System for the Determination of Low Levels of Hydro­ gen in Irradiated Materials //Journal of Nuclear Mate­ rials. 2001, v. 283-287, p. 1006. 10.D.A. Jablonski et al. Compliance Functions for Vari­ ous Fracture Mechanics Specimens //Engineering Frac­ ture Mechanics. 1985, v. 22, N 5, p. 819–827. 11.P. Marmy et al. The effect of hydrogen on the frac­ ture toughness of the titanium alloys Ti6Al4V and Ti5Al2.5Sn before and after neutron irradiation. 2003, CRPP, Centre de Recherches en Physique des Plasmas, EPFL Lausanne, p. 1–27. 12.O. Kubaschewski et al. Titanium: Physico-Chemical Properties of its Compounds and Alloys, ed. A.E. Re­ view. 1983, v. Special Issue N 9: International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A- 1400. Vienna, Austria. 460. ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с. 18-23. 23 ВЯЗКОСТЬ РАЗРУШЕНИЯ И ПРОЧНОСТЬ НА РАСТЯЖЕНИЕ ДВУХ ТИТАНОВЫХ СПЛАВОВ ДО И ПОСЛЕ ОБЛУЧЕНИЯ ПРОТОНАМИ И НЕЙТРОНАМИ ПРИ 1500 С П. Марми Два титановых сплава α+β Ті6A14V и α-фаза Ti5A12.5Sn были облучены при 150ºС нейтронами в реакторе исследо­ вательского Института ядерной энергии в Будапеште и 590 МэВ протонами на установке ПИРЕКС в Институте Поль- Шеррер, в Швейцарии до доз порядка 0.15 сна. Облучение протонами обусловливает образование водорода как продук­ та реакций расщепления. Несколько облученных нейтронами образцов были предварительно нагружены 150 wppm во­ дорода. Прочность на растяжение и вязкость разрушения были проанализированы как функция содержания водорода. При низких уровнях водород не оказывает существенного влияния на прочность на растяжение. Влияние облучения на пластичность и прочность более выражено в α+β Ті6A14V вследствие радиационно-обусловленной фазовой нестабиль­ ности. При температуре испытания в 150ºС водород в количестве 150 wppm оказывает умеренное влияние на вязкость разрушения в необлученном состоянии. Для облученных образцов в двух сталях увеличение содержания водорода пони­ жает вязкость разрушения. Вязкость разрушения после облучения сильно уменьшается при комнатной температуре в обоих сплавах. В`ЯЗКІСТЬ РУЙНУВАННЯ ТА МІЦНІСТЬ НА РОЗТЯГ ДВОХ ТИТАНОВИХ СПЛАВІВ ДО ТА ПІ­ СЛЯ ОПРОМІНЕННЯ ПРОТОНАМИ ТА НЕЙТРОНАМИ ПРИ 150оС П. Мармі Два титанові сплави α+β Ті6A14V та α-фаза Ti5A12.5Sn були опромінені при 150ºС нейтронами в реакторі дослідни­ цького Інституту ядерної енергії в Будапешті та 590 МеВ протонами на установці ПІРЕКС в Швейцарії до доз порядку 0.15 зна. Опромінення протонами зумовлює утворення водню як продукта розщеплення. Декілька опромінених нейтронами зразків були попередньо навантажені 150 wppm водню. Міцність на розтяг та в`язкість руйнування були проаналізовані як функція вмісту водню. При низьких рівнях водень не має суттєвого впливу на міцність на розтяг. Вплив опромінення на пластичність та на міцність більш виразний у сплаві α+β Ті6A14V внаслідок радіаційно-об­ умовленої фазової нестабільності. При температурі випробування в 150ºС водень у кількості 150wppm має помірний вплив на в`язкість руйнування в неопроміненному стані. Для опроміненних зразків в двох сталях зростання вмісту водню знижує в`язкість руйнування. В`язкість руйнування сильно зменьшується при кімнатній температурі в обох сплавах. ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с. 18-23. 24