Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures

Model calculations of general dust quantity which is possible to raise during possible crashing of “Shelter” building structures are shown. Mechanism of particle “jump-up” i.e. raising of particles due to dusted surface oscillation is used during calculations. It is shown, that particles with diame...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Batiy, V.G., Mikhailyuk, V.P., Rubezhanskiy, Yu.I., Rudko, V.M., Sizov, A.A., Fedorchenko, D.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/80555
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures / V.G. Batiy, V.P. Mikhailyuk, Yu.I. Rubezhanskiy, V.M. Rudko, A.A. Sizov, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2004. — № 5. — С. 93-95. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-80555
record_format dspace
spelling irk-123456789-805552015-04-19T03:02:52Z Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures Batiy, V.G. Mikhailyuk, V.P. Rubezhanskiy, Yu.I. Rudko, V.M. Sizov, A.A. Fedorchenko, D.V. Применение ядерных методов Model calculations of general dust quantity which is possible to raise during possible crashing of “Shelter” building structures are shown. Mechanism of particle “jump-up” i.e. raising of particles due to dusted surface oscillation is used during calculations. It is shown, that particles with diameter 20 µm are possible to overpass border sublayer and raise over ruins of the “Shelter” building. Проведено модельні розрахунки загальної кількості пилу, який може підніматися при можливому руйнуванні внутрішніх нестабільних конструкцій об’єкту “Укриття”. При розрахунках розглядався механізм “підскоку” частинок, тобто підйом частинок, який виникає внаслідок коливань запиленої поверхні. Показано, що частинки пилу діаметром близько 20 мкм здатні долати ламінарний прикордонний підшар і підніматися над розвалами об'єкту “Укриття”. Проведены модельные расчеты общего количества пыли, которая может подниматься при возможном обрушении внутренних нестабильных конструкций объекта “Укрытие”. При расчетах рассматривался механизм “подскока” частиц, т.е. подъем частиц, возникающий из-за колебаний запыленной поверхности. Показано, что частицы пыли диаметром около 20 мкм способны преодолевать ламинарный пограничный подслой и подниматься над развалами объекта “Укрытие”. 2004 Article Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures / V.G. Batiy, V.P. Mikhailyuk, Yu.I. Rubezhanskiy, V.M. Rudko, A.A. Sizov, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2004. — № 5. — С. 93-95. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 28.41Te http://dspace.nbuv.gov.ua/handle/123456789/80555 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ядерных методов
Применение ядерных методов
spellingShingle Применение ядерных методов
Применение ядерных методов
Batiy, V.G.
Mikhailyuk, V.P.
Rubezhanskiy, Yu.I.
Rudko, V.M.
Sizov, A.A.
Fedorchenko, D.V.
Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures
Вопросы атомной науки и техники
description Model calculations of general dust quantity which is possible to raise during possible crashing of “Shelter” building structures are shown. Mechanism of particle “jump-up” i.e. raising of particles due to dusted surface oscillation is used during calculations. It is shown, that particles with diameter 20 µm are possible to overpass border sublayer and raise over ruins of the “Shelter” building.
format Article
author Batiy, V.G.
Mikhailyuk, V.P.
Rubezhanskiy, Yu.I.
Rudko, V.M.
Sizov, A.A.
Fedorchenko, D.V.
author_facet Batiy, V.G.
Mikhailyuk, V.P.
Rubezhanskiy, Yu.I.
Rudko, V.M.
Sizov, A.A.
Fedorchenko, D.V.
author_sort Batiy, V.G.
title Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures
title_short Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures
title_full Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures
title_fullStr Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures
title_full_unstemmed Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures
title_sort mathematical modelling of radioactive dust rise during collapse of “shelter” object building structures
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Применение ядерных методов
url http://dspace.nbuv.gov.ua/handle/123456789/80555
citation_txt Mathematical modelling of radioactive dust rise during collapse of “Shelter” object building structures / V.G. Batiy, V.P. Mikhailyuk, Yu.I. Rubezhanskiy, V.M. Rudko, A.A. Sizov, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2004. — № 5. — С. 93-95. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT batiyvg mathematicalmodellingofradioactivedustriseduringcollapseofshelterobjectbuildingstructures
AT mikhailyukvp mathematicalmodellingofradioactivedustriseduringcollapseofshelterobjectbuildingstructures
AT rubezhanskiyyui mathematicalmodellingofradioactivedustriseduringcollapseofshelterobjectbuildingstructures
AT rudkovm mathematicalmodellingofradioactivedustriseduringcollapseofshelterobjectbuildingstructures
AT sizovaa mathematicalmodellingofradioactivedustriseduringcollapseofshelterobjectbuildingstructures
AT fedorchenkodv mathematicalmodellingofradioactivedustriseduringcollapseofshelterobjectbuildingstructures
first_indexed 2025-07-06T04:33:29Z
last_indexed 2025-07-06T04:33:29Z
_version_ 1836870700789399552
fulltext MATHEMATICAL MODELLING OF RADIOACTIVE DUST RISE DUR- ING COLLAPSE OF “SHELTER” OBJECT BUILDING STRUCTURES V.G. Batiy, V.P. Mikhailyuk, Yu.I. Rubezhanskiy, V.M. Rudko, A.A. Sizov, D.V. Fedorchenko Interdisciplinary Scientific and Technical Center “Shelter” of Ukraine’s NAS e-mail: batiy@mntc.org.ua Model calculations of general dust quantity which is possible to raise during possible crashing of “Shelter” building structures are shown. Mechanism of particle “jump-up” i.e. raising of particles due to dusted surface oscil- lation is used during calculations. It is shown, that particles with diameter 20 µm are possible to overpass border sublayer and raise over ruins of the “Shelter” building. PACS: 28.41Te The “Shelter” object’s safety level depends to a great extent from the reliability of engineering barriers represented by external bearing and fencing structures, ferroconcrete elements of foundation-basement part, and internal structures of the walls and ceilings. The assess- ments carried out have shown [1] that during an earth- quake of some five numbers in MSK-64 scale, a col- lapse is possible of “Shelter” object internal structures, which can entail a considerable dust rise of “Shelter” ra- dioactive dust and its release in close vicinity to the Ob- ject. On top of that, with 10-5 year-1 probability, F1, 5 class tornado can arise at the ChNPP industrial site, whose passage over “Shelter” itself can also bring to the collapse of unstable building structures. Currently there is an opinion that there two basic mechanisms of dust resuspension after falling of build- ing structures on “Shelter” dusty surface: dust blow-off with airflow arising during structures collapse and dust particle “jump-up” associated with dusty surface fluctu- ations [2-5]. This report covers the particle “jump-up” mecha- nism, i.е., particle rise appearing due to dusty surface fluctuations. Let us assume that a solid of M = 100 ⋅ 103 kg is falling on a dusty surface from H = 10 m height. Such surface fluctuations arising after transfer to it of falling solid pulse, will lead to dust particle rise. Let us introduce the main values defining the param- eters of falling solid and of material of surface, from which dust rise will occur: surfρ = 2500 kg/m3, l = 54 m, s = 24 m, h = 0.8 m, Е = 0.8 1011 Pa, σ = 0.18, where surfρ – surface material density (concrete densi- ty), Е – elastic modulus, σ – Poisson factor, l, s, h - length, width and height of plate, corresponding- ly. Cyclic frequency of surface fluctuations is define from expression [6]             +     ρ π=ω 22 2 n s m l h D surf g , (1) where m, n = 1, 2, ... are the harmonic numbers along axes x, y, correspondingly, and surface cylindrical hard- ness gD totals )1(12 2 3 σ− = EhDg . (2) Maximum values of velocity vertical component maxv and acceleration maxw of surface fluctuations make ,max ω= Av 2 max ω= Aw . (3) Here А is averaged fluctuation amplitude. Depen- dence of frequency f, vibration amplitude А, velocity vertical component maxv and acceleration maxw of fluctuation harmonic number along axis х is shown in Table 1 (it was assumed that fluctuation harmonic num- ber along axis y n = 1). Table 1. Dependence of frequency f, vibration am- plitude А, velocity vertical component maxv and accel- eration maxw of fluctuation harmonic number along axis х m ,maxv (m/s) ,maxw (m/s2) f, (s-1) 1 8,86 241,42 4,34 2 13,24 539,46 6,48 3 20,55 1298,94 10,06 Dust particle interaction with diverse surfaces is characterized by adhesion force. In [8] experimentally measured values of adhesion force are shown adF in dependence of diameters of adhered particles. The above dependence can be well approximated with the expression         ⋅ ⋅−⋅= − − − 5 5 4 101.2 102exp103.1 dFad , (4) where d – particles diameter (µm). Dust particles capable to overcome the laminary sublayer are rising over surface and produce a dust cloud. Laminary sublayer thickness is defined from the ratio [8] PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2004, № 5. Series: Nuclear Physics Investigations (44), p. 93-95. 93 ,))/(37,0()/(3,33 8/15/1 max 5/48/7 max vvxvv vv=δ (5) where x is the distance from frontier area of surface be- ing blown in (x=10 cm), vv is air kinematic viscosity. In Table 2, dependence of laminary sublayer thick- ness δ of velocity vertical component maxv is shown. Table 2. Dependence of laminary sublayer thickness δ of velocity vertical component maxv maxv , (m/s) 8,86 13,24 20,55 δ, (mm) 0,15 0,1 0,07 One should note that measured in [7] inherent fluctuation frequency of “Shelter” structures is about 8 … 10 Hz. Considering the data shown in Table 1 and 2, one should take as m = 3. Equation of particle movement, possessing initial velocity max0)0( vvtv === in air medium, has the type sg FF dt tdvm −−=)( , (6) where 6/3dm part πρ= is dust particle mass; partρ = 6500 kg/m3 is dust particle density; mgFg = is gravi- tation interaction force; sF is forces resisting to particle movement. Choice of expression for forces depends on move- ment type, which is defined by Reynolds figure value Re. Besides the expression for resistance forces must in- clude adhesion forces adF [8]. For Reynolds figures Re is much more than 1, resis- tance force equation for medium can be presented as follows 2 2 1 vCSF вDAs ρ= . (7) In this formula, AS is the projection square of dust particle to the plane that is perpendicular to particle ve- locity ( 2 4 1 dS A π= for spherical particles), DС is the medium resistance factor [8] ReReCD /)15.01(24 687.0+= . (8) Equation (6) let us show as follows )()( 221 tv m f m f dt tdv −−= , (9) where adFmgf +=1 , вDACSf ρ= 2 1 2 . Solution of equa- tion (9) looks like as regards               −= 1 21 2 1 tan)( a mat m a f atv . (10) In this formula, the following values are introduced: 1a = 21 ff , 2a =         21 2maxarctan ff fv . (11) The time, during which a particle reaches maximum height, and maximum height of rise, are defined from the ratios 1 2 max a matt == , (12) . 2 tan1ln 2 1ln )( 2 2 1 21 2 1 2max 0 max f a ma t m a m f f fv m dttvh t                       −+ − −     + == ∫ (13) Table 3 shows the values of critical diameters crd of particles (under critical diameter is implied the mini- mum value of particle diameter, above which the parti- cle is capable to overcome laminary boundary layer and to rise over ruin surface), rise maximum time maxt , cor- responding to critical diameter, laminary sublayer thick- ness δ and fluctuation harmonic number m. Table 3. The values of critical diameters crd of particles, rise maximum time maxt , corresponding to critical diameter, laminary sublayer thickness δ and fluctuation harmonic number m m crd , (µm) δ, (mm) maxt , (µs) 1 40 0,15 0,4 2 30 0,1 0,12 3 21 0,07 0,06 Above results testify the facts that over rather short time the particle of d > 20 µm diameter is capable to overcome laminary boundary sublayer using “jump-up” mechanism. One should note, in above “jump-up” mechanism it was not assumed that rising particle would “elementary”, but it deemed that the particle would have a sphere form. In other words, in seen mechanism the conglomerates of bound small particles can rise, whose bonds can later be destroyed in dust cloud. After de- struction of those bonds, the newly produced particles will maintain “life time” durability of dust cloud and make its contribution to its activity. To evaluate total dust amount being risen due to “jump-up” mechanism, let us apply described in [2] ex- perimentally measured distribution of dust particle num- ber in dependence of their diameter (see figure). 0 100 200 300 400 500 600 N u m b e r o f p a r t i c l e s 2 4 6 8 10 12 14 16 P a r t I c l e d I a m e t e r, m k m Distribution of dust particle numbers vs their diameter 94 The above [2] experimentally measured distribution of dust particle number d)f ( can be satisfactorily ap- proximated by Gaussian function })12.4(056.0exp{12.45876.13)( 2−−+= ddf . (14) Let us suppose that all particles, which can over- come laminary sublayer, will rise over surface with pro- ducing a dust cloud. The particles of more 300 µm mass are of immediate precipitation; therefore in estimating particle diameter ranges were limited by this value. Total dust particle mass risen after structure collapse from a single site was defined from the ratio dddfm d d ч ∂= ∫ 2 1 2)( 2 π ρ , (15) where 1d , 2d – range of risen particle diameters, µm. As it was mentioned above, in estimating it was as- sumed that the range of risen particle diameters is as fol- lows: 1d = 20 µm; 2d = 300 µm. Obtained value of total dust amount, which can rise from dusty surface when implementing such a scenario of building structures collapse, totals around 1,7 ton. One should note that a similar approach was used in [4] for quantitative evaluation of mass of dust being risen as a result of SO building structures collapse en- tailed by an earthquake. The estimates demonstrated in [4] have shown that under such a scenario of collapse the total mass of risen dust will make value of around 3,5 ton. It was noted in this report that the main mechanism of dust resuspension is the dust blow-off mechanism. Delivered in [4] estimates for "jump-up" mechanism have shown that the diameter of dust particle being risen ≈ 328 µm. One should note that in [4], in contradistinc- tion from this report, medium resistance forces were used for liquid laminary flow, and adhesion forces were not considered. In the work [9] it was marked that basing on existing data it is complicated enough to quantify total dust mass as a whole for the Object, and there is a lack of informa- tion pertaining to dust concentrations in the air and to distribution of dust particle sizes. In this report, some recommendations were worked out for conduct of addi- tional sampling, subsequent measurements of total dust mass and it radioactive components. Implementation of such experimental measurements will need further studying of dust resuspension mechanism. One should note that described approach was used in analyzing the consequences of probable destruction of “Shelter” Object building structures associated with falling of loads and extremal wind-induced impacts (tor- nado) in drafting detailed work design for stabilization measures at the “Shelter” object and Conceptual Project of new safe confinement. REFERENCES 1. Design criteria for “Integrated Stabilization Project”. SIP “А” Package. WBS A01 13000. Doc. 1.4. Kyiv: Chornobyl, 2000. 2. Origination of experimental data to identify current state of dust contamination and conduct of quantita- tive assessments of radiation accident consequences at “Shelter” Object. (Rep. for Contract 78/96) //ISTC “Shelter” of Ukraine’s NAS. Chornobyl: 1997. 3. Study of dust rise peculiarities and preparation of recommendations for its reduction in sub-roofing space of “Shelter” Object. (Report on RDW Stage 1). RADEZ-2-NIKIMT. M.: 1997. 4. S.A. Bogatov. Evaluation of dust amount capable to resuspension during a collapse of “Shelter” Object roof- ing structures // Problems of Chornobyl. 2001, Issue 7, p. 83. 5. S.A. Bogatov. Assessment of radiological conse- quences of accident associated with a collapse of “Shelter” Object roofing structures. Preprint of In- stitute for problems of safe development of nuclear power engineering: № IBRAE-2001-06. Moscow: 2001, 29 p. 6. L.D. Landau, E.M. Lifshits Continuum mechanics. M.: 1954, 795 p. (in Russian). 7. Structural Report. (Report on results of performed researches). SIP А Package, WBS A06 50000. Doc. 6.4. Kyiv, Chornobyl, 1999. 8. A.D. Zimon. Dust and powder adhesion. M.: Khimiya, 1976, 432 p. (in Russian). 9. Task 10. Dust management. Plan for dust property description. SIP-03/1/C01, 1999. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПОДЪЕМА РАДИОАКТИВНОЙ ПЫЛИ ПРИ ОБРУШЕ- НИИ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ОБЪЕКТА “УКРЫТИЕ” В.Г. Батий, В.П. Михайлюк, Ю.И. Рубежанский, В.М. Рудько, А.А. Сизов, Д.В. Федорченко Проведены модельные расчеты общего количества пыли, которая может подниматься при возможном обрушении внутренних нестабильных конструкций объекта “Укрытие”. При расчетах рассматривался меха- низм “подскока” частиц, т.е. подъем частиц, возникающий из-за колебаний запыленной поверхности. Пока- зано, что частицы пыли диаметром около 20 мкм способны преодолевать ламинарный пограничный подслой и подниматься над развалами объекта “Укрытие”. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПІДЙОМУ РАДІОАКТИВНОГО ПИЛУ ПРИ РУЙНУВАННІ БУДІВЕЛЬНИХ КОНСТРУКЦІЙ ОБ’ЄКТУ “УКРИТТЯ” В.Г. Батій, В.П. Михайлюк, Ю.І Рубежанський, В.М. Рудько, А.О. Сізов, Д.В. Федорченко 95 Проведено модельні розрахунки загальної кількості пилу, який може підніматися при можливому руйнуванні внутрішніх нестабільних конструкцій об’єкту “Укриття”. При розрахунках розглядався механізм “підскоку” частинок, тобто підйом частинок, який виникає внаслідок коливань запиленої поверхні. Показано, що частинки пилу діаметром близько 20 мкм здатні долати ламінарний прикордонний підшар і підніматися над розвалами об'єкту “Укриття”. 96 REFERENCES