Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
Актуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработ...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
2013
|
Назва видання: | Проблемы машиностроения |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/80953 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости / Д.А. Дёмин // Проблемы машиностроения. — 2013. — Т. 16, № 6. — С. 15-23. — Бібліогр.: 23 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Актуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработка процедуры нечеткой кластеризации, позволяющей «разнести» все экспериментальные точки в многомерном факторном пространстве, «приписав» их к той или иной вершине гиперкуба, формирующего план полного факторного эксперимента для реализации последующей процедуры ортогонализации. Математическая модель процесса представляет собой регрессионное уравнение в виде полинома Колмогорова-Габора, описывающее влияние нечётких входных переменных – состава сплава – на его свойства. Это так называемая модель типа «состав – свойство». В результате реализации предложенной процедуры нечёткой кластеризации, обязательной перед построением уравнения регрессии в случае, если область планирования имеет произвольную форму, может быть установлен кластер, «ближайший» по отношению к рассматриваемой экспериментальной точке и осуществлена процедура отнесения соответствующей точки к тому или иному центру кластеризации. Полученные при этом результаты могут быть использованы для дальнейшей процедуры построения уравнения регрессии. Предложен алгоритм нечеткой кластеризации и приведены примеры расчета функций принадлежности, используемых при реализации этого алгоритма. Использование предлагаемой процедуры является эффективным при оценке параметров математических моделей по данным пассивного эксперимента в условиях малой выборки нечетких данных. |
---|