2025-02-24T18:39:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-80953%22&qt=morelikethis&rows=5
2025-02-24T18:39:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-80953%22&qt=morelikethis&rows=5
2025-02-24T18:39:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-24T18:39:16-05:00 DEBUG: Deserialized SOLR response
Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
Актуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработ...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
2013
|
Series: | Проблемы машиностроения |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/80953 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Актуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработка процедуры нечеткой кластеризации, позволяющей «разнести» все экспериментальные точки в многомерном факторном пространстве, «приписав» их к той или иной вершине гиперкуба, формирующего план полного факторного эксперимента для реализации последующей процедуры ортогонализации. Математическая модель процесса представляет собой регрессионное уравнение в виде полинома Колмогорова-Габора, описывающее влияние нечётких входных переменных – состава сплава – на его свойства. Это так называемая модель типа «состав – свойство». В результате реализации предложенной процедуры нечёткой кластеризации, обязательной перед построением уравнения регрессии в случае, если область планирования имеет произвольную форму, может быть установлен кластер, «ближайший» по отношению к рассматриваемой экспериментальной точке и осуществлена процедура отнесения соответствующей точки к тому или иному центру кластеризации. Полученные при этом результаты могут быть использованы для дальнейшей процедуры построения уравнения регрессии. Предложен алгоритм нечеткой кластеризации и приведены примеры расчета функций принадлежности, используемых при реализации этого алгоритма. Использование предлагаемой процедуры является эффективным при оценке параметров математических моделей по данным пассивного эксперимента в условиях малой выборки нечетких данных. |
---|