Поліноміальна інтерполяція з відомими проекціями на довільній системі n груп прямих, які складаються з m паралельних прямих

Задано N груп прямих, кожна з яких складається з M паралельних прямих. Кожна пряма з однієї групи перетинається з усіма прямими з інших N – 1 груп. Вважається, що в точках перетину цих прямих задаються значення фінітної функції f(x, y) неперервної разом із своїми похідними першого порядку, носій яко...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Литвин, О.О., Хурдей, Є.Л.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2014
Назва видання:Проблемы машиностроения
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81020
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Поліноміальна інтерполяція з відомими проекціями на довільній системі n груп прямих, які складаються з m паралельних прямих / О.О. Литвин, Є.Л. Хурдей // Проблемы машиностроения. — 2014. — Т. 17, № 3. — С. 60-66. — Бібліогр.: 13 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Задано N груп прямих, кожна з яких складається з M паралельних прямих. Кожна пряма з однієї групи перетинається з усіма прямими з інших N – 1 груп. Вважається, що в точках перетину цих прямих задаються значення фінітної функції f(x, y) неперервної разом із своїми похідними першого порядку, носій якої квадрат [0, 1]×[0, 1]. Вважаються також відомими проекції, тобто інтеграли вздовж кожної із n×m прямих, які поступають з комп'ютерного томографа. Розв'язується така задача: побудувати оператор наближення функції f(x, y), який не тільки інтерполює функцію у вказаних вузлах, але й також має вказані проєкції. Результати даної роботи можуть бути використані при неруйнівному контролі важливих деталей в машинобудуванні.