Precision of a FDTD method to simulate cold magnetized plasmas
The finite difference time domain (FDTD) method is applied to describe the propagation of the transverse electromagnetic waves through the magnetized plasmas. The numerical dispersion relation is obtained in a cold plasma approximation. The accuracy of the numerical dispersion is calculated as a fun...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/81191 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Precision of a FDTD method to simulate cold magnetized plasmas / I.V. Pavlenko, D.A. Melnyk, A.O. Prokaieva, I.O. Girka // Вопросы атомной науки и техники. — 2014. — № 6. — С. 37-40. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The finite difference time domain (FDTD) method is applied to describe the propagation of the transverse electromagnetic waves through the magnetized plasmas. The numerical dispersion relation is obtained in a cold plasma approximation. The accuracy of the numerical dispersion is calculated as a function of the frequency of the launched wave and time step of the numerical grid. It is shown that the numerical method does not reproduce the analytical results near the plasma resonances for any chosen value of time step if there is not a dissipation mechanism in the system. It means that FDTD method cannot be applied straightforward to simulate the problems where the plasma resonances play a key role (for example, the mode conversion problems). But the accuracy of the numerical scheme can be improved by introducing some artificial damping of the plasma currents. Although part of the wave power is lost in the system in this case but the numerical scheme describes the wave processes in an agreement with analytical predictions. |
---|