Эффективное увеличение области притяжения глобального минимума квадратичного бинарного функционала при нейросетевом поиске

Решается задача минимизации квадратичного функционала в конфигурационном пространстве. Для эффективного увеличения области притяжения глубоких минимумов предлагается матрицу, на которой построен функционал, возводить в степень, и на полученном новом функционале решать задачу минимизации. В работе...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Карандашев, Я.М., Крыжановский, Б.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2009
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/8145
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Эффективное увеличение области притяжения глобального минимума квадратичного бинарного функционала при нейросетевом поиске / Я.М. Карандашев, Б.В. Крыжановский // Штучний інтелект. — 2009. — № 4. — С. 37-44. — Бібліогр.: 3 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Решается задача минимизации квадратичного функционала в конфигурационном пространстве. Для эффективного увеличения области притяжения глубоких минимумов предлагается матрицу, на которой построен функционал, возводить в степень, и на полученном новом функционале решать задачу минимизации. В работе показано на примере матриц двумерной спинстекольной модели Изинга, что такая техника приводит к сдвигу спектра минимумов в более глубокую область, резко сокращает число находимых мелких минимумов и позволяет с большей, на 3 – 4 порядка, вероятностью находить глобальный минимум.