Алгоритм для решения нелинейных краевых задач по τ-методу Ланцоша в системах компьютерной алгебры

Построен алгебраический алгоритм для преобразования многоточечной линейной краевой задачи для дифференциального уравнения порядка k с линейной частью – линейный дифференциальный оператор многочленными коэффициентами порядка k и нелинейной частью – функция f( y, y',..., y^(k-1) ) в алгебраически...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Денисенко, П.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2009
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/8166
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Алгоритм для решения нелинейных краевых задач по Ʈ-методу Ланцоша в системах компьютерной алгебры / П.Н. Денисенко // Штучний інтелект. — 2009. — № 4. — С. 119-129. — Бібліогр.: 5 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Построен алгебраический алгоритм для преобразования многоточечной линейной краевой задачи для дифференциального уравнения порядка k с линейной частью – линейный дифференциальный оператор многочленными коэффициентами порядка k и нелинейной частью – функция f( y, y',..., y^(k-1) ) в алгебраический многочлен порядка n (n принадлежит N). Этот многочлен – аппроксимация решения y(x), x принадлежит [a,b], исходной краевой задачи. Эта аппроксимация оптимальна в пространстве C^k[a,b].