Particle transport simulations based on selfconsistency of pressure profiles in tokamaks
Simulation of particle and heat transport was performed with the ASTRA code. The equations for the electron temperature and density, ion temperature and current diffusion were solved. For the heat transport we used the canonical profiles model. Three T-10 pulses with toroidal magnetic field 2.5...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/81776 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Particle transport simulations based on selfconsistency of pressure profiles in tokamaks / A.V. Danilov, Yu. N. Dnestrovskij, V.F. Andreev, S.V. Cherkasov, A.Yu. Dnestrovskij, S.E. Lysenko, V.A. Vershkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 44-46. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-81776 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-817762015-05-21T03:02:19Z Particle transport simulations based on selfconsistency of pressure profiles in tokamaks Danilov, A.V. Dnestrovskij, Yu. N. Andreev, V.F. Cherkasov, S.V. Dnestrovskij, A.Yu. Lysenko, S.E. Vershkov, V.A. Magnetic confinement Simulation of particle and heat transport was performed with the ASTRA code. The equations for the electron temperature and density, ion temperature and current diffusion were solved. For the heat transport we used the canonical profiles model. Three T-10 pulses with toroidal magnetic field 2.5 T, plasma current 250…255 kA, initial average density 1.3, 2.4 and 3.2×10¹⁹ m⁻³ respectively, on-axis 900 kW ECRH and D₂ puffing were considered. The model proved to describe rather fast penetration of the density disturbance from the edge to the core during 15…20 ms after gas puffing. The simulation of the density profiles agrees with experiment in Ohmic and ECRH phases, and during the gas puffing, describing the particle pump-out after ECRH switch-on. The neutral influx at the plasma edge increases after ECRH switch-on in agreement with Da measurements. Both the effective diffusion coefficient and pinch velocity decrease slightly when the plasma density is increased. A set of two Ohmic and three NBI MAST pulses were considered for comparison. 2006 Article Particle transport simulations based on selfconsistency of pressure profiles in tokamaks / A.V. Danilov, Yu. N. Dnestrovskij, V.F. Andreev, S.V. Cherkasov, A.Yu. Dnestrovskij, S.E. Lysenko, V.A. Vershkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 44-46. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.55.Fa; 52.25.Fi http://dspace.nbuv.gov.ua/handle/123456789/81776 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Magnetic confinement Magnetic confinement |
spellingShingle |
Magnetic confinement Magnetic confinement Danilov, A.V. Dnestrovskij, Yu. N. Andreev, V.F. Cherkasov, S.V. Dnestrovskij, A.Yu. Lysenko, S.E. Vershkov, V.A. Particle transport simulations based on selfconsistency of pressure profiles in tokamaks Вопросы атомной науки и техники |
description |
Simulation of particle and heat transport was performed with the ASTRA code. The equations for the electron
temperature and density, ion temperature and current diffusion were solved. For the heat transport we used the
canonical profiles model. Three T-10 pulses with toroidal magnetic field 2.5 T, plasma current 250…255 kA, initial
average density 1.3, 2.4 and 3.2×10¹⁹ m⁻³ respectively, on-axis 900 kW ECRH and D₂ puffing were considered. The
model proved to describe rather fast penetration of the density disturbance from the edge to the core during 15…20 ms
after gas puffing. The simulation of the density profiles agrees with experiment in Ohmic and ECRH phases, and during
the gas puffing, describing the particle pump-out after ECRH switch-on. The neutral influx at the plasma edge increases
after ECRH switch-on in agreement with Da measurements. Both the effective diffusion coefficient and pinch velocity
decrease slightly when the plasma density is increased. A set of two Ohmic and three NBI MAST pulses were
considered for comparison. |
format |
Article |
author |
Danilov, A.V. Dnestrovskij, Yu. N. Andreev, V.F. Cherkasov, S.V. Dnestrovskij, A.Yu. Lysenko, S.E. Vershkov, V.A. |
author_facet |
Danilov, A.V. Dnestrovskij, Yu. N. Andreev, V.F. Cherkasov, S.V. Dnestrovskij, A.Yu. Lysenko, S.E. Vershkov, V.A. |
author_sort |
Danilov, A.V. |
title |
Particle transport simulations based on selfconsistency of pressure profiles in tokamaks |
title_short |
Particle transport simulations based on selfconsistency of pressure profiles in tokamaks |
title_full |
Particle transport simulations based on selfconsistency of pressure profiles in tokamaks |
title_fullStr |
Particle transport simulations based on selfconsistency of pressure profiles in tokamaks |
title_full_unstemmed |
Particle transport simulations based on selfconsistency of pressure profiles in tokamaks |
title_sort |
particle transport simulations based on selfconsistency of pressure profiles in tokamaks |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Magnetic confinement |
url |
http://dspace.nbuv.gov.ua/handle/123456789/81776 |
citation_txt |
Particle transport simulations based on selfconsistency of pressure profiles in tokamaks / A.V. Danilov, Yu. N. Dnestrovskij,
V.F. Andreev, S.V. Cherkasov, A.Yu. Dnestrovskij, S.E. Lysenko, V.A. Vershkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 44-46. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT danilovav particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks AT dnestrovskijyun particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks AT andreevvf particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks AT cherkasovsv particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks AT dnestrovskijayu particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks AT lysenkose particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks AT vershkovva particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks |
first_indexed |
2024-03-30T08:17:13Z |
last_indexed |
2024-03-30T08:17:13Z |
_version_ |
1796146810846183424 |