Particle transport simulations based on selfconsistency of pressure profiles in tokamaks

Simulation of particle and heat transport was performed with the ASTRA code. The equations for the electron temperature and density, ion temperature and current diffusion were solved. For the heat transport we used the canonical profiles model. Three T-10 pulses with toroidal magnetic field 2.5...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Danilov, A.V., Dnestrovskij, Yu. N., Andreev, V.F., Cherkasov, S.V., Dnestrovskij, A.Yu., Lysenko, S.E., Vershkov, V.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81776
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Particle transport simulations based on selfconsistency of pressure profiles in tokamaks / A.V. Danilov, Yu. N. Dnestrovskij, V.F. Andreev, S.V. Cherkasov, A.Yu. Dnestrovskij, S.E. Lysenko, V.A. Vershkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 44-46. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81776
record_format dspace
spelling irk-123456789-817762015-05-21T03:02:19Z Particle transport simulations based on selfconsistency of pressure profiles in tokamaks Danilov, A.V. Dnestrovskij, Yu. N. Andreev, V.F. Cherkasov, S.V. Dnestrovskij, A.Yu. Lysenko, S.E. Vershkov, V.A. Magnetic confinement Simulation of particle and heat transport was performed with the ASTRA code. The equations for the electron temperature and density, ion temperature and current diffusion were solved. For the heat transport we used the canonical profiles model. Three T-10 pulses with toroidal magnetic field 2.5 T, plasma current 250…255 kA, initial average density 1.3, 2.4 and 3.2×10¹⁹ m⁻³ respectively, on-axis 900 kW ECRH and D₂ puffing were considered. The model proved to describe rather fast penetration of the density disturbance from the edge to the core during 15…20 ms after gas puffing. The simulation of the density profiles agrees with experiment in Ohmic and ECRH phases, and during the gas puffing, describing the particle pump-out after ECRH switch-on. The neutral influx at the plasma edge increases after ECRH switch-on in agreement with Da measurements. Both the effective diffusion coefficient and pinch velocity decrease slightly when the plasma density is increased. A set of two Ohmic and three NBI MAST pulses were considered for comparison. 2006 Article Particle transport simulations based on selfconsistency of pressure profiles in tokamaks / A.V. Danilov, Yu. N. Dnestrovskij, V.F. Andreev, S.V. Cherkasov, A.Yu. Dnestrovskij, S.E. Lysenko, V.A. Vershkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 44-46. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.55.Fa; 52.25.Fi http://dspace.nbuv.gov.ua/handle/123456789/81776 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Danilov, A.V.
Dnestrovskij, Yu. N.
Andreev, V.F.
Cherkasov, S.V.
Dnestrovskij, A.Yu.
Lysenko, S.E.
Vershkov, V.A.
Particle transport simulations based on selfconsistency of pressure profiles in tokamaks
Вопросы атомной науки и техники
description Simulation of particle and heat transport was performed with the ASTRA code. The equations for the electron temperature and density, ion temperature and current diffusion were solved. For the heat transport we used the canonical profiles model. Three T-10 pulses with toroidal magnetic field 2.5 T, plasma current 250…255 kA, initial average density 1.3, 2.4 and 3.2×10¹⁹ m⁻³ respectively, on-axis 900 kW ECRH and D₂ puffing were considered. The model proved to describe rather fast penetration of the density disturbance from the edge to the core during 15…20 ms after gas puffing. The simulation of the density profiles agrees with experiment in Ohmic and ECRH phases, and during the gas puffing, describing the particle pump-out after ECRH switch-on. The neutral influx at the plasma edge increases after ECRH switch-on in agreement with Da measurements. Both the effective diffusion coefficient and pinch velocity decrease slightly when the plasma density is increased. A set of two Ohmic and three NBI MAST pulses were considered for comparison.
format Article
author Danilov, A.V.
Dnestrovskij, Yu. N.
Andreev, V.F.
Cherkasov, S.V.
Dnestrovskij, A.Yu.
Lysenko, S.E.
Vershkov, V.A.
author_facet Danilov, A.V.
Dnestrovskij, Yu. N.
Andreev, V.F.
Cherkasov, S.V.
Dnestrovskij, A.Yu.
Lysenko, S.E.
Vershkov, V.A.
author_sort Danilov, A.V.
title Particle transport simulations based on selfconsistency of pressure profiles in tokamaks
title_short Particle transport simulations based on selfconsistency of pressure profiles in tokamaks
title_full Particle transport simulations based on selfconsistency of pressure profiles in tokamaks
title_fullStr Particle transport simulations based on selfconsistency of pressure profiles in tokamaks
title_full_unstemmed Particle transport simulations based on selfconsistency of pressure profiles in tokamaks
title_sort particle transport simulations based on selfconsistency of pressure profiles in tokamaks
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/81776
citation_txt Particle transport simulations based on selfconsistency of pressure profiles in tokamaks / A.V. Danilov, Yu. N. Dnestrovskij, V.F. Andreev, S.V. Cherkasov, A.Yu. Dnestrovskij, S.E. Lysenko, V.A. Vershkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 44-46. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT danilovav particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks
AT dnestrovskijyun particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks
AT andreevvf particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks
AT cherkasovsv particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks
AT dnestrovskijayu particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks
AT lysenkose particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks
AT vershkovva particletransportsimulationsbasedonselfconsistencyofpressureprofilesintokamaks
first_indexed 2024-03-30T08:17:13Z
last_indexed 2024-03-30T08:17:13Z
_version_ 1796146810846183424