Design and initial operation of multichord soft X-ray detection array on the U-3M torsatron

A miniature pinhole camera array for spatially and temporally resolved measurements of soft X-ray emission has been designed and installed in the URAGAN-3M torsatron. Two features of the U-3M: a) very large vacuum vessel; b) a quite high RF noise from the 8-9 MHz plasma heating generators, form a ra...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Dreval, M.B.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81964
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Design and initial operation of multichord soft X-ray detection array on the U-3M torsatron / M.B. Dreval // Вопросы атомной науки и техники. — 2014. — № 6. — С. 250-253. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A miniature pinhole camera array for spatially and temporally resolved measurements of soft X-ray emission has been designed and installed in the URAGAN-3M torsatron. Two features of the U-3M: a) very large vacuum vessel; b) a quite high RF noise from the 8-9 MHz plasma heating generators, form a rather difficult for the SXR system design conditions. In order to increase the SXR brightness in 25-50 times the pinhole camera is placed between helical coils near plasma in the “A-A” cross-section. The size of the pinhole and its location relative to the diode array are optimized to cover the whole poloidal cross section and to achieve a good spatial resolution with minimum overlap in nearby channels. Possible misalignments of the SXR system can cause errors in the line of sight impact parameter less than 3⁰ (similar to the SXR channel viewing angle). The maximum of the measured SXR brightness intensity corresponds to the central channel № 11 of the system. The 2.5•10⁷ V/A SXR photodiode photocurrent amplifiers with additional RF noise suppress electronics have been manufactured. The SXR electronics does successfully work in high vacuum conditions near the plasma. Time evolution of the SXR emission profile and its fluctuations are successfully measuring by the designed diagnostics.