A Method of Integral Equations for a Structure in the Form of Thin Elastic Plates

The second basic dynamic problem for thin elastic plates in Kirchhoff model is under consideration. The problem reduces to system of the nonstationary boundary equations by means of dynamic analogue of a single layer potential. The numerical solutions of these systems have been obtained. The investi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Shuvalova, Yu.S., Strelnikova, E.A.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2011
Назва видання:Управляющие системы и машины
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/82911
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Method of Integral Equations for a Structure in the Form of Thin Elastic Plates / Yu.S. Shuvalova, E.A. Strelnikova // Управляющие системы и машины. — 2011. — № 1. — С. 57-62. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The second basic dynamic problem for thin elastic plates in Kirchhoff model is under consideration. The problem reduces to system of the nonstationary boundary equations by means of dynamic analogue of a single layer potential. The numerical solutions of these systems have been obtained. The investigation of convergence of method of discrete singularities for the plate of the rectangular form have been carried out.