A Method of Integral Equations for a Structure in the Form of Thin Elastic Plates
The second basic dynamic problem for thin elastic plates in Kirchhoff model is under consideration. The problem reduces to system of the nonstationary boundary equations by means of dynamic analogue of a single layer potential. The numerical solutions of these systems have been obtained. The investi...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2011
|
Назва видання: | Управляющие системы и машины |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/82911 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Method of Integral Equations for a Structure in the Form of Thin Elastic Plates / Yu.S. Shuvalova, E.A. Strelnikova // Управляющие системы и машины. — 2011. — № 1. — С. 57-62. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The second basic dynamic problem for thin elastic plates in Kirchhoff model is under consideration. The problem reduces to system of the nonstationary boundary equations by means of dynamic analogue of a single layer potential. The numerical solutions of these systems have been obtained. The investigation of convergence of method of discrete singularities for the plate of the rectangular form have been carried out. |
---|