Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics
A distinctive feature of this work is grouping naive Bayesian classifiers in the scheme of "one against all" and using the extended features space. Metric and categorial variables are present in the original sample. The scheme of "one vs. all" with the use of other methods of cla...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2014
|
Назва видання: | Індуктивне моделювання складних систем |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/83989 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics / N. Kondrashova, V. Pavlov // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2014. — Вип. 6. — С. 11-23. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-83989 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-839892015-07-03T03:01:46Z Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics Kondrashova, N. Pavlov, V. A distinctive feature of this work is grouping naive Bayesian classifiers in the scheme of "one against all" and using the extended features space. Metric and categorial variables are present in the original sample. The scheme of "one vs. all" with the use of other methods of classification gives an improvement in the accuracy of the differential diagnosis on exam sample compared to a single Bayesian classifier, but not in the case of the Naive Bayesian classifiers. The obtained results allow us to compare methods accuracies with such as GMDH and canonical discriminant analysis in solution of classification problem. Відмінною особливістю даної роботи є ансамблювання наївних Байєсівських класифікаторів в схемі «один проти всіх» і використанні розширеного простору ознак. У первинній вибірці присутні метричні і категорійні змінні. Схема «один проти всіх» із застосуванням інших методів класифікації дає поліпшення на екзамені точності диференціальної діагностики порівняно з єдиним класифікатором, але не у випадку наївних Байєсівських класифікаторів. Отримані результати точності дозволяють порівняти їх з результатами інших методів розв'язання задачі класифікації: таких як МГУА і канонічний дискримінантний аналіз. Отличительной особенностью данной работы является ансамблирование наивных Байесовских классификаторов в схеме «один против всех» и использовании расширенного пространства признаков. В исходной выборке присутствуют метрические и категориальные переменные. Схема «один против всех» с применением других методов классификации дает улучшение на экзамене точности дифференциальной диагностики по сравнению с единым классификатором, но не в случае наивных Байесовских классификаторов. Полученные результаты точности позволяют сравнить их с результатами других методов решения задачи классификации: таких как МГУА и канонический дискриминантный анализ. 2014 Article Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics / N. Kondrashova, V. Pavlov // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2014. — Вип. 6. — С. 11-23. — Бібліогр.: 22 назв. — англ. XXXX-0044 http://dspace.nbuv.gov.ua/handle/123456789/83989 681.513.8 en Індуктивне моделювання складних систем Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A distinctive feature of this work is grouping naive Bayesian classifiers in the scheme of "one against all" and using the extended features space. Metric and categorial variables are present in the original sample. The scheme of "one vs. all" with the use of other methods of classification gives an improvement in the accuracy of the differential diagnosis on exam sample compared to a single Bayesian classifier, but not in the case of the Naive Bayesian classifiers. The obtained results allow us to compare methods accuracies with such as GMDH and canonical discriminant analysis in solution of classification problem. |
format |
Article |
author |
Kondrashova, N. Pavlov, V. |
spellingShingle |
Kondrashova, N. Pavlov, V. Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics Індуктивне моделювання складних систем |
author_facet |
Kondrashova, N. Pavlov, V. |
author_sort |
Kondrashova, N. |
title |
Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics |
title_short |
Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics |
title_full |
Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics |
title_fullStr |
Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics |
title_full_unstemmed |
Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics |
title_sort |
naive bayesian classifiers for purposes of medical differential diagnostics |
publisher |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/83989 |
citation_txt |
Naive Bayesian Classifiers for Purposes of Medical Differential Diagnostics / N. Kondrashova, V. Pavlov // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2014. — Вип. 6. — С. 11-23. — Бібліогр.: 22 назв. — англ. |
series |
Індуктивне моделювання складних систем |
work_keys_str_mv |
AT kondrashovan naivebayesianclassifiersforpurposesofmedicaldifferentialdiagnostics AT pavlovv naivebayesianclassifiersforpurposesofmedicaldifferentialdiagnostics |
first_indexed |
2023-10-18T19:27:57Z |
last_indexed |
2023-10-18T19:27:57Z |
_version_ |
1796147032999591936 |