О радиусе устойчивости векторной инвестиционной задачи с критериями минимаксного риска Сэвиджа
На базi класичної моделi Марковиця сформульовано векторну (багатокритерiальну) булеву задачу портфельної оптимiзацiї з критерiями «вузького мiсця» за умов ризику. Отримано нижню i верхню оцiнки досяжностi кiлькiсної характеристики такого типу стiйкостi задачi, що є дискретним аналогом напiвнеперервн...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2012
|
Назва видання: | Кибернетика и системный анализ |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/84109 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О радиусе устойчивости векторной инвестиционной задачи с критериями минимаксного риска Сэвиджа / В.А. Емеличев, В.В. Коротков // Кибернетика и системный анализ. — 2012. — Т. 48, № 3. — С. 68-77. — Бібліогр.: 20 назв. — рос. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | На базi класичної моделi Марковиця сформульовано векторну (багатокритерiальну) булеву задачу портфельної оптимiзацiї з критерiями «вузького мiсця» за умов ризику. Отримано нижню i верхню оцiнки досяжностi кiлькiсної характеристики такого типу стiйкостi задачi, що є дискретним аналогом напiвнеперервного зверху за Хаусдорфом точково-множинного вiдображення, що задає принцип оптимальностi за Парето. |
---|