Спряжено-переставні підгрупи деяких нескінченних груп
Пiдгрупа H групи G називається спряжено-переставною, якщо HH^g = H^gH для кожного елемента g, що належить G. Доведено субнормальнiсть спряжено-переставних пiдгруп у деяких класах нескiнченних груп, таких, наприклад, як чернiковськi або майже полiциклiчнi групи. Доведено, що в iнших класах нескiнче...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2012
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/84351 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Спряжено-переставні підгрупи деяких нескінченних груп / Л.А. Курдаченко, Х.М. Муньоз-Есколано, Н.А. Турбай // Доповiдi Нацiональної академiї наук України. — 2012. — № 8. — С. 18-21. — Бібліогр.: 8 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-84351 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-843512015-07-07T03:02:05Z Спряжено-переставні підгрупи деяких нескінченних груп Курдаченко, Л.А. Муньоз-Есколано, Х.М. Турбай, Н.А. Математика Пiдгрупа H групи G називається спряжено-переставною, якщо HH^g = H^gH для кожного елемента g, що належить G. Доведено субнормальнiсть спряжено-переставних пiдгруп у деяких класах нескiнченних груп, таких, наприклад, як чернiковськi або майже полiциклiчнi групи. Доведено, що в iнших класах нескiнченних груп, таких, наприклад, як майже розв’язнi мiнiмакснi групи, кожна спряжено-переставна пiдгрупа є зростаючою. Також розглянуто структуру нескiнченних груп, кожна циклiчна пiдгрупа яких є спряжено-переставною. Подгруппа H группы G называется сопряженно-перестановочной, если HH^g = H^gH для каждого элемента g принадлежит G. Доказана субнормальность сопряженно-перестановочных подгрупп в некоторых классах бесконечных групп, таких, например, как черниковские или почти полициклические группы. Доказано, что в других классах бесконечных групп, таких, например, как почти разрешимые минимаксные группы, каждая сопряженно-перестановочная подгруппа будет возрастающей. Также изучена структура бесконечных групп, каждая циклическая подгруппа которых является сопряженно-перестановочной. A subgroup H of a group G is called conjugate-permutable in G if HH^g = H^gH for each element g belongs G. We proved that a conjugate-permutable subgroups are subnormal in some classes of infinite groups, in particular, in polycyclic-by-finite groups and in Chernikov groups. We find the classes of infinite groups, in which every conjugate-permutable subgroup is always ascendant, and we consider the structure of infinite groups, whose cyclic subgroups are conjugate-permutable. 2012 Article Спряжено-переставні підгрупи деяких нескінченних груп / Л.А. Курдаченко, Х.М. Муньоз-Есколано, Н.А. Турбай // Доповiдi Нацiональної академiї наук України. — 2012. — № 8. — С. 18-21. — Бібліогр.: 8 назв. — укр. 1025-6415 http://dspace.nbuv.gov.ua/handle/123456789/84351 512.544 uk Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
topic |
Математика Математика |
spellingShingle |
Математика Математика Курдаченко, Л.А. Муньоз-Есколано, Х.М. Турбай, Н.А. Спряжено-переставні підгрупи деяких нескінченних груп Доповіді НАН України |
description |
Пiдгрупа H групи G називається спряжено-переставною, якщо HH^g = H^gH для кожного елемента g, що належить G. Доведено субнормальнiсть спряжено-переставних пiдгруп у деяких
класах нескiнченних груп, таких, наприклад, як чернiковськi або майже полiциклiчнi
групи. Доведено, що в iнших класах нескiнченних груп, таких, наприклад, як майже розв’язнi мiнiмакснi групи, кожна спряжено-переставна пiдгрупа є зростаючою. Також розглянуто структуру нескiнченних груп, кожна циклiчна пiдгрупа яких є спряжено-переставною. |
format |
Article |
author |
Курдаченко, Л.А. Муньоз-Есколано, Х.М. Турбай, Н.А. |
author_facet |
Курдаченко, Л.А. Муньоз-Есколано, Х.М. Турбай, Н.А. |
author_sort |
Курдаченко, Л.А. |
title |
Спряжено-переставні підгрупи деяких нескінченних груп |
title_short |
Спряжено-переставні підгрупи деяких нескінченних груп |
title_full |
Спряжено-переставні підгрупи деяких нескінченних груп |
title_fullStr |
Спряжено-переставні підгрупи деяких нескінченних груп |
title_full_unstemmed |
Спряжено-переставні підгрупи деяких нескінченних груп |
title_sort |
спряжено-переставні підгрупи деяких нескінченних груп |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2012 |
topic_facet |
Математика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/84351 |
citation_txt |
Спряжено-переставні підгрупи деяких нескінченних груп / Л.А. Курдаченко, Х.М. Муньоз-Есколано, Н.А. Турбай // Доповiдi Нацiональної академiї наук України. — 2012. — № 8. — С. 18-21. — Бібліогр.: 8 назв. — укр. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT kurdačenkola sprâženoperestavnípídgrupideâkihneskínčennihgrup AT munʹozeskolanohm sprâženoperestavnípídgrupideâkihneskínčennihgrup AT turbajna sprâženoperestavnípídgrupideâkihneskínčennihgrup |
first_indexed |
2023-10-18T19:28:45Z |
last_indexed |
2023-10-18T19:28:45Z |
_version_ |
1796147069333798912 |