Оптимизация систем, описываемых эллиптическими краевыми задачами с неоднородными неустойчивыми граничными условиями
В развитие методов и алгоритмов на основе штрафных функций в конечномерном пространстве [1, 2] построены конструкции слабого дифференциала (дифференциала Гато) и производной Фреше по управляющим функциям для функционалов вида кратных интегралов с негладкими подинтегральными функциями в оптимизационн...
Збережено в:
Дата: | 2003 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2003
|
Назва видання: | Теорія оптимальних рішень |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/84853 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Оптимизация систем, описываемых эллиптическими краевыми задачами с неоднородными неустойчивыми граничными условиями / О.Н. Токарева // Теорія оптимальних рішень: Зб. наук. пр. — 2003. — № 2. — С. 36-42. — Бібліогр.: 4 назв. — рос. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В развитие методов и алгоритмов на основе штрафных функций в конечномерном пространстве [1, 2] построены конструкции слабого дифференциала (дифференциала Гато) и производной Фреше по управляющим функциям для функционалов вида кратных интегралов с негладкими подинтегральными функциями в оптимизационной модели проектирования механичеких систем с операторными ограничениями в форме эллиптической краевой задачи. Неоднородные неустойчивые граничные условия последней сведены к однородным. Дана теорема существования и единственности решения сопряженных краевых задач. |
---|