Задача нахождения непересекающихся и несовпадающих циклов на сети
Рассмотрена задача нахождения непересекающихся и несовподающих циклов на сети с двумя весами дуг. Показано, что она может быть сформулирована как задача нахождения непересекаюшихся совершенных паросочетаний на двудольном графе. Когда веса дуг равные, данная задача эквивалентна задаче нахождения пото...
Збережено в:
Дата: | 2003 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2003
|
Назва видання: | Теорія оптимальних рішень |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/84868 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Задача нахождения непересекающихся и несовпадающих циклов на сети / Ф.А. Шарифов // Теорія оптимальних рішень: Зб. наук. пр. — 2003. — № 2. — С. 155-161. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассмотрена задача нахождения непересекающихся и несовподающих циклов на сети с двумя весами дуг. Показано, что она может быть сформулирована как задача нахождения непересекаюшихся совершенных паросочетаний на двудольном графе. Когда веса дуг равные, данная задача эквивалентна задаче нахождения потока минимальной стоимости на сети представленой двудольным графом. Для последней задачи разработаны ряд строгих полиномиальных алгоритмов. В общем случае рассмотренная задача не имеет целочисленное решение. В работе приводятся основные этапы полиномиального алгоритма для решения задачи в общем случае. |
---|