2025-02-23T18:33:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-84998%22&qt=morelikethis&rows=5
2025-02-23T18:33:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-84998%22&qt=morelikethis&rows=5
2025-02-23T18:33:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T18:33:00-05:00 DEBUG: Deserialized SOLR response
Об одной верхней оценке для взвешенного числа устойчивости графа
We derived an upper bound for the weighted stability number of a simple undirected graph G, which is the solution of a linear pogramming problem with O(|V|³) constraints, where V is a number of vertices in the graph. We proved that this upper bound is at least as good as the known bound based on th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2007
|
Series: | Теорія оптимальних рішень |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/84998 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We derived an upper bound for the weighted stability number of a simple undirected graph G, which is the solution of a linear pogramming problem with O(|V|³) constraints, where V is a number of vertices in the graph. We proved that this upper bound is at least as good as the known bound based on the polytope CSTAB(G) , and it is also an exact upper bound for the weighted stability number of the t-perfect graph. |
---|