Улучшение сходимости нейро-фаззи кластеризации многомерных данных при использовании неевклидовых метрик

В статье предложен модифицированный алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению матрицы расстояний Махаланобиса в процессе подготовки центроидов к обработке сетью Кохонена и выполнения сжатия ее размера, позволяет повысить сходимость и, в ряде случаев, чувствите...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Ахметшина, Л.Г., Егоров, А.А., Удовик, И.М.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2013
Назва видання:Искусственный интеллект
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/85077
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Улучшение сходимости нейро-фаззи кластеризации многомерных данных при использовании неевклидовых метрик / Л.Г. Ахметшина, А.А. Егоров, И.М. Удовик // Искусственный интеллект. — 2013. — № 3. — С. 534–541. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В статье предложен модифицированный алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению матрицы расстояний Махаланобиса в процессе подготовки центроидов к обработке сетью Кохонена и выполнения сжатия ее размера, позволяет повысить сходимость и, в ряде случаев, чувствительность при обработке многомерных данных. Представлены экспериментальные результаты применения предложенного модифицированного алгоритма mdsFCM для кластеризации низкоконтрастных цветных медицинских изображений.