Oб экстремальной теории графов и символьных вычислениях
Минимальную длину цикла, проходящего через выбранную вершину простого графа, назовем цикловым индикатором вершины. Цикловой индикатор графа определим как наибольшее значение цикловых индикаторов его вершин. Регулярный граф называется графом с иррегулярным цикловим индикатором, если его цикловой инди...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2013
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/85391 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Oб экстремальной теории графов и символьных вычислениях / В.А. Устименко // Доповiдi Нацiональної академiї наук України. — 2013. — № 2. — С. 42–49. — Бібліогр.: 15 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Минимальную длину цикла, проходящего через выбранную вершину простого графа, назовем цикловым индикатором вершины. Цикловой индикатор графа определим как наибольшее значение цикловых индикаторов его вершин. Регулярный граф называется графом с иррегулярным цикловим индикатором, если его цикловой индикатор отличается
от обхвата. В работе приводится полное решение оптимизационной задачи вычисления максимального размера e = e(v) для графов заданного порядка v с цикловым индикатором, превышающим выбранный параметр d, d > 2. Рассматривается задача нахождения наименьшего порядка для k-регулярного графа с цикловим индикатором d.
Приводится алгебраическая конструкция беcконечной семьи регулярных графов заданной степени с возрастающим иррегулярным цикловим индикатором асимптотически
максимального размера. Построенная бесконечная последовательность графов заданной
степени p^s, где p — произвольное нечетное простое, а s — произвольное натуральное
число, образует семью графов малого мира. Обсуждаются криптографические применения этой конструкции. |
---|