Adaptation of oscillatory systems in networks — a learning signal approach
We consider a network of coupled periodic stable signals (PSS) interacting through the gradient of a coupling potential. Each PSS has its own set of parameters Ωk, characterizing the time scale of the signal and its shape. The Ωk are allowed to modify their values (i.e. to adapt) by introducing adap...
Saved in:
Date: | 2014 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2014
|
Series: | Системні дослідження та інформаційні технології |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/85498 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Adaptation of oscillatory systems in networks — a learning signal approach / J. Rodriguez // Системні дослідження та інформаційні технології. — 2014. — № 2. — С. 53-67. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-85498 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-854982015-08-07T03:02:11Z Adaptation of oscillatory systems in networks — a learning signal approach Rodriguez, J. Прогресивні інформаційні технології, високопродуктивні комп’ютерні системи We consider a network of coupled periodic stable signals (PSS) interacting through the gradient of a coupling potential. Each PSS has its own set of parameters Ωk, characterizing the time scale of the signal and its shape. The Ωk are allowed to modify their values (i.e. to adapt) by introducing adaptive mechanisms on them. Together with the state variable interactions, the adaptive mechanisms drive all PSS towards a consensual oscillatory state where they all have a common, constant set of parameters Ωk. Once reached, the consensual oscillatory state remains invariant to the interactions. This implies that if the interactions are removed, all PSS continue to deliver the consensual signal. This situation is to be contrasted with classical synchronization problems where common dynamical patterns are attained and maintained thanks to the interactions. Hence, if the interactions are removed, all PSS converge back towards their individual behavior. The resulting value Ωk is analytically calculated. It does not depend on the network’s topology. However, the conditions for convergence do depend on the connectivity of the network and on the coupling potential. Розглянуто мережу зв’язаних періодичних стійких сигналів (PSS) взаємодіючих через градієнт потенціалу зв’язку. Кожен PSS має свій власний набір параметрів Ωk, що характеризує часову шкалу сигналу і його форму. Ωk можуть змінювати їх значення (тобто, адаптуватися) шляхом введення в них адаптивних механізмів. Разом з взаємодіями змінних стану, адаптивні механізми приводять усі PSS до узгодженого коливального стану, де вони всі мають спільну, постійну множину параметрів Ωk. Будучи досягнутим, узгоджений коливальний стан залишається інваріантним до взаємодій. Це означає, що якщо взаємодії прибирають, то усі PSS продовжують видавати узгоджений сигнал. Ця ситуація відрізняється від класичних проблем синхронізації, де загальні динамічні характеристики досягаються і підтримуються завдяки взаємодіям. Таким чином, якщо взаємодії прибирають, усі PSS сходяться назад до їх індивідуальної поведінки. Результат значення Ωk обчислюється аналітично. Він не залежить від топології мережі. Однак умови збіжності все ж залежать від зв’язності мережі і від сполученого потенціалу. Рассмотрена сеть связанных периодических устойчивых сигналов (PSS) взаимодействующих через градиент потенциала связи. Каждый PSS имеет свой собственный набор параметров Ωk, характеризующий временную шкалу сигнала и его форму Ωk могут менять их значения (то есть, адаптироваться) путем введения в них адаптивных механизмов. Вместе с взаимодействиями переменных состояния, адаптивные механизмы приводят все PSS к согласованному колебательному состоянию, где они все имеют общее, постоянное множество параметров Ωk. Будучи достигнутым, согласованное колебательное состояние остается инвариантным к взаимодействиям. Это означает, что если взаимодействия убирают, то все PSS продолжают выдавать согласованный сигнал. Эта ситуация отличается от классических проблем синхронизации, где общие динамические характеристики достигаются и поддерживаются благодаря взаимодействиям. Таким образом, если взаимодействия убирают, все PSS сходятся обратно к их индивидуальному поведению. Результат значения Ωk вычисляется аналитически. Он не зависит от топологии сети. Однако условия сходимости все же зависят от связности сети и от сопряженного потенциала. 2014 Article Adaptation of oscillatory systems in networks — a learning signal approach / J. Rodriguez // Системні дослідження та інформаційні технології. — 2014. — № 2. — С. 53-67. — Бібліогр.: 10 назв. — англ. 1681–6048 http://dspace.nbuv.gov.ua/handle/123456789/85498 518.58 en Системні дослідження та інформаційні технології Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Прогресивні інформаційні технології, високопродуктивні комп’ютерні системи Прогресивні інформаційні технології, високопродуктивні комп’ютерні системи |
spellingShingle |
Прогресивні інформаційні технології, високопродуктивні комп’ютерні системи Прогресивні інформаційні технології, високопродуктивні комп’ютерні системи Rodriguez, J. Adaptation of oscillatory systems in networks — a learning signal approach Системні дослідження та інформаційні технології |
description |
We consider a network of coupled periodic stable signals (PSS) interacting through the gradient of a coupling potential. Each PSS has its own set of parameters Ωk, characterizing the time scale of the signal and its shape. The Ωk are allowed to modify their values (i.e. to adapt) by introducing adaptive mechanisms on them. Together with the state variable interactions, the adaptive mechanisms drive all PSS towards a consensual oscillatory state where they all have a common, constant set of parameters Ωk. Once reached, the consensual oscillatory state remains invariant to the interactions. This implies that if the interactions are removed, all PSS continue to deliver the consensual signal. This situation is to be contrasted with classical synchronization problems where common dynamical patterns are attained and maintained thanks to the interactions. Hence, if the interactions are removed, all PSS converge back towards their individual behavior. The resulting value Ωk is analytically calculated. It does not depend on the network’s topology. However, the conditions for convergence do depend on the connectivity of the network and on the coupling potential. |
format |
Article |
author |
Rodriguez, J. |
author_facet |
Rodriguez, J. |
author_sort |
Rodriguez, J. |
title |
Adaptation of oscillatory systems in networks — a learning signal approach |
title_short |
Adaptation of oscillatory systems in networks — a learning signal approach |
title_full |
Adaptation of oscillatory systems in networks — a learning signal approach |
title_fullStr |
Adaptation of oscillatory systems in networks — a learning signal approach |
title_full_unstemmed |
Adaptation of oscillatory systems in networks — a learning signal approach |
title_sort |
adaptation of oscillatory systems in networks — a learning signal approach |
publisher |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
publishDate |
2014 |
topic_facet |
Прогресивні інформаційні технології, високопродуктивні комп’ютерні системи |
url |
http://dspace.nbuv.gov.ua/handle/123456789/85498 |
citation_txt |
Adaptation of oscillatory systems in networks — a learning signal approach / J. Rodriguez // Системні дослідження та інформаційні технології. — 2014. — № 2. — С. 53-67. — Бібліогр.: 10 назв. — англ. |
series |
Системні дослідження та інформаційні технології |
work_keys_str_mv |
AT rodriguezj adaptationofoscillatorysystemsinnetworksalearningsignalapproach |
first_indexed |
2025-07-06T12:46:28Z |
last_indexed |
2025-07-06T12:46:28Z |
_version_ |
1836901717443084288 |
fulltext |
Julio Rodriguez, 2014
Системні дослідження та інформаційні технології, 2014, № 2 53
УДК 518.58
ADAPTATION OF OSCILLATORY SYSTEMS IN NETWORKS —
A LEARNING SIGNAL APPROACH
JULIO RODRIGUEZ
We consider a network of coupled periodic stable signals (PSS) interacting through
the gradient of a coupling potential. Each PSS has its own set of parameters k ,
characterizing the time scale of the signal and its shape. The k are allowed to
modify their values (i.e. to adapt) by introducing adaptive mechanisms on them. To-
gether with the state variable interactions, the adaptive mechanisms drive all PSS
towards a consensual oscillatory state where they all have a common, constant set of
parameters .c Once reached, the consensual oscillatory state remains invariant to
the interactions. This implies that if the interactions are removed, all PSS continue to
deliver the consensual signal. This situation is to be contrasted with classical syn-
chronization problems where common dynamical patterns are attained and main-
tained thanks to the interactions. Hence, if the interactions are removed, all PSS
converge back towards their individual behavior. The resulting value c is ana-
lytically calculated. It does not depend on the network’s topology. However, the
conditions for convergence do depend on the connectivity of the network and on the
coupling potential.
1. INTRODUCTION
Producing stable oscillatory motion is of great importance for a device delivering
stable periodic signals. Due to its stability mechanism, the apparatus sends out
signals that are not drastically altered even if it is placed in a noisy environment.
However, structural changes within the device may occur (e.g. the stability
mechanism itself may be perturbed), and these create permanent discrepancies,
thus lowering the quality of the output signal. To overcome this problem, a signal
can be coupled to another of its like. As an example, consider two coupled signals
)(1 tr and )(2 tr in the setup
2,1),,();( 21
krr
r
V
rRr
k
kkk (1)
with the gradient of a potential V as coupling function. Here, the set of parame-
ters 10 21 due to a structural change. Synchronizing signals may
enhance the overall quality in the sense that now, under suitable conditions,
)()(lim , trtr Vkk
(for )2,1k with signals )(, tr Vk having the same perio-
dicity .Vt
However, synchronized signals )(,1 tr V and )(,2 tr V only exist at the cost of
maintaining the coupling — if coupling vanishes (i.e. )0V , the two individual
signals return, respectively, towards the signals produced by the vector fields
Julio Rodriguez
ISSN 1681–6048 System Research & Information Technologies, 2014, № 2 54
,);( kR .2,1k Furthermore, ,)(, tr Vk and consequently period ,Vt is subject
to any change in the coupling: if V changes, the synchronized signals, as well as
their periodic behavior, are perturbed.
One way to tackle this problem is to construct systems that can synchronize
and simultaneously “adapt” local characteristics (i.e. k ) in order to be:
closer to their likes (i.e. reduce the difference ;)11
less dependent on the coupling (i.e. find k
such that ),( 21
Z
))(),((( 21 trtrV
is minimum over a period and )(trk
solves Equations (1)).
An optimum solution for I and II is when there exists a consensual parameter
set ,kc 2,1k such that .0),( ccZ In this situation, if the coupling
is removed, the devices continue to deliver the same signal. Furthermore, at this
consensual state, any changes in the coupling does not affect the signals since
they are now independent of it.
Technically, for local parameters k to adapt, they must become time-
dependent (i.e. )(tkk and have their own dynamics. For n coupled sig-
nals, having each an additional phase variable controlling their time scale, the
general complex networks dynamics is
,),(),,( r
V
crP
k
kkkkk
,),(),,(
dynamicscoupling
dynamicslocal
r
r
V
crRr
k
kkkkk
,,,1 nk (2)
mechanismsadaptive
),( rAkk
with ,),( 1 n ),,( 1 nrrr and coupling strengths .0kc The local dy-
namics belong to the class of PR systems (i.e phase-radius systems): P and R gov-
ern the dynamics of the local oscillator’s phase and radius, respectively. Adapting
parameters in complex systems has long been a busy field of research [1–10].
Whereas in other contributions adaptation occurs in the coupling strength [5] or
directly in the connections [2], Equations (2) describe adaptation in the local sys-
tems. As mentioned in [6], for local systems’ parameter adaptation, there exist
two types: flow parameters controlling the frequency or time scale on an attractor,
and geometric parameters determining the shape of the attracting set. Frequency
or time scale controlling parameters have, in general, a high propensity for adap-
tation and have been well studied in [3, 10, 1, 7]. However, not much has been
accomplished for shaping local attractors, which, by nature, is a more delicate
task — as stated in [8, 9].
In this paper, we present new adaptive mechanisms for modifying the local
system’s attractor. Whereas in [8, 9] the adaptive mechanisms implicitly depend
Adaptation of Oscillatory Systems in Networks — A Learning Signal Approach
Системні дослідження та інформаційні технології, 2014, № 2 55
on the parameter set k via a functional, ours solely depend on the state vari-
ables k and .kr Note that adaptive mechanisms should only depend on the state
variables since, in practice, these are the only information available. In [8, 9], one
needs to calculate or numerically compute an integral beforehand to know the
sign of the function for the adaptive mechanism. Our approach is systematic for
all parameters.
This contribution is organized as follows: We present individually the com-
ponents of our network’s dynamical system in Section 2. In Section 3 we discuss
the resulting dynamics and present two related alternatives to our system. Nu-
merical simulations are reported in Section 4, and we conclude in Section 5.
2. NETWORKS OF PERIODIC STABLE SIGNALS WITH ADAPTIVE
MECHANISMS
Consider a n — vertex connected and undirected network with positive adjacency
entries. To each node corresponds a local dynamical system defined in Sec-
tion 2.1. While the network topology (i.e. adjacency matrix) of the underlying
network indicates if the thk local system is connected to the thf (and vice versa),
it is the coupling dynamics discussed in Section 2.2 that describes how the
neighboring local dynamics interact. Described in Section 2.3, supplementary in-
teractions directly acting on the local systems’ parameters will play the role of
adaptive mechanisms. Let us now individually present each three dynamical com-
ponents.
2.1. Local Dynamics
The local systems belong to the class of PR systems. We here focus on Periodic
Stable Signals (PSS), which we define as
kkkk wrP );,(
,)())(();,(
dynamicsyoscillatirdynamicsedissipativ
kkkkkkkk wFFrrR ,,,1 nk (3)
with
q
m
kmkkmkkkk mvmuuF
1
,,0, )(sin)(cos)( . The set of parameters is
.},,,,,,{ ,,1,1,0, qkqkkkkkk vuvuuw Parameter kw controls the time scale of
the phase, which here oscillates uniformly (i.e. .))( kkk twt
The rest of the parameters determine the shape of the stable periodic signal
produced by a PSS. Stable here means that if the system endures a perturbation, it
will converge back to its oscillatory motion and continue to deliver the signal with
its original shape given by the compact set .}0)(|),{( 1 kk Frr
The convergence towards k is discussed in Appendix A. It is the dissipative
dynamics that is responsible for driving the orbits towards k . This term is the
gradient (with respect to the variable )r of the potential .))((
2
1 2kFr It is seen as
Julio Rodriguez
ISSN 1681–6048 System Research & Information Technologies, 2014, № 2 56
an energy controller that takes in and/or gives out energy (depending on the
system’s state) until it reaches its
equilibrium state k . On k , the
PSS’s dynamics is governed by the
oscillatory dynamics and so )(trk
,0)())(( ttF kkk which is consis-
tence with Equation (3) when the dissi-
pative dynamics is zero.
When ,)( 0,kkk uF the PSS is
a limit cycle oscillator with constant
angular velocity and a circle of radius
0,ku as an attractor. As sketched in
Fig. 1, PSS may form more complicated
and interesting attractors.
2.2. Coupling Dynamics
The coupling dynamics is here given by the gradient of a positive semi-definite
coupling potential 0),( rV (see Section 1.1.2 in [6] for a precise definition).
On ,V we have the following assumptions
0),(,,1and1 rVzyzry
with ,),,( 1 n ),,( 1 nrrr and .)1,,1(1 Bellow, we present two ex-
amples.
Example 1. Laplacian Potential
Define V as
n
j
jkjjk
n
k
kr rlrLrrV
1
,
1
cos )(cos
2
1
|
2
1
),(
with ),,( 1 n and ,),,( 1 nrrr and where the matrix rLcos has entries
)(cos, jkjjk rl with L being the corresponding Laplacian matrix ,( ADL
where D is the diagonal matrix with
n
j
jkkk ad
1
,, ). Matrix rLcos is positive
semi-definite since, by Гершгорин’s circle theorem [4], all its eigenvalues are
positive (i.e. nonnegative). Explicitly, the coupling dynamics for this potential is
,)(sin),(
1
,
n
j
jkjkjkk
k
k rrlcr
V
c
,,,1 nk
,)(cos),(
1
,
n
j
jkjjkk
k
k rlcr
r
V
c ,,,1 nk
where 0kc are coupling strengths.
Fig. 1. Sketch of an attractor for a PSS.
The dynamics evolves at a constant angular
velocity twt kk )( on the black thick curve
Adaptation of Oscillatory Systems in Networks — A Learning Signal Approach
Системні дослідження та інформаційні технології, 2014, № 2 57
Example 2. B Potential
Define V as
0))()((
2
1
),(
,
,,,
n
jk
jkjkjkjkjk rrBBarV
with edge weights ,0 ,kjkj aa and where functions jkB , satisfy ,0)(, xB jk
,00)(, xxB jk )()( ,, xBxB jkjk (i.e. even function) and )0(0 , jkB . We
here impose kjjk BB ,, . For the functions ,, jkB one may take one of the cases
)(
2
1
)( 2
, xxB jk
Diffusion 1)(cosh)(, xxB jk
)(cos1)(, xxB jk Kuramoto-type ))((coshlog)(, xxB jk
.
Explicitly, the coupling dynamics for this potential is
,)(),(
1
,,
n
j
jkjkjkk
k
k Bacr
V
c
,,,1 nk
,)(),(
1
,,
n
j
jkjkjkk
k
k rrBacr
r
V
c nk ,,1
with coupling strengths .0kc
2.3. Adaptive Mechanisms
Here, adaptive mechanisms are additional interactions that modify the values of
the local parameters. For this, the fixed and constant parameters k are now
time-dependent (i.e.
},,,,,,{ ,,1,1,0, qkqkkkkkk vuvuuw
,)())(),(,),(),(),(),(( ,,1,1,0, ttvttvtttw kqkqkkkkk
for nk ,,1 ) and each have their own dynamics depending only on state vari-
ables and ,r that is, for all ,k 0
k
kA
with 0 a q22 dimensional vector
of .0
Time scale Adaptive Mechanisms
For adaptation on ,k we apply the same idea as developed in [8, 6] and so the
explicit dynamics is
),(),( r
V
srA
k
k k
,,,1 nk
where 0
k
s are susceptibility constants, technically playing the role of cou-
pling strengths but with the following interpretation: the smaller the value of
k
s ,
Julio Rodriguez
ISSN 1681–6048 System Research & Information Technologies, 2014, № 2 58
the easier it is for the PSS to modify the value of its ,k and vice versa — the
larger the value of ,
k
s the harder it is for the PSS to modify the value of its .k
Amplitude Adaptive Mechanisms
Inspired by attractor-shaping mechanisms studied in [8, 6] we propose, for the
PSS’s mkk ,0, , and mkv , , the following new adaptive mechanisms
,)(),(
1
,
,1
, 0,0,
0
n
j
jjkj
sj
j
n
j
jjkk rls
F
rlsrA
kk
,,,1 nk
,)(cos)(),(
1
,
,1
, ,,
n
j
jjjkj
mj
j
n
j
jjkk mrls
F
rlsrA
mkmk
m
,,,1 nk
n
j
jjjkvj
mj
j
n
j
jjkv
v
k mrls
v
F
rlsrA
mkmk
m
1
,
,1
, ,)(sin)(),(
,,
,,,1 qm
where jkl , are the entries of L and strictly positive ,
0,k
s ,
,mk
s and
mkvs
,
are
susceptibility constants.
3. NETWORK’S DYNAMICAL SYSTEM WITH TIME SCALE AND
AMPLITUDE ADAPTATION
Combining the individual components discussed in Section 2 yields the global
dynamical system
,),( r
V
c
k
kkk
,,,1 nk
,),()())((
dynamicscoupling
dynamicslocal
r
r
V
cFFrr
k
kkkkkkkk
,,,1 nk
,
),()(
mechanisms adaptive scale time
r
V
s
k
k k
,,,1 nk
,
1
,0, 0,
n
j
jjkk rls
k ,,,1 nk
),(cos
1
,, , j
n
j
jjkmk mrls
mk
,,,1 qm
,)(sin
mechanisms adaptive amplitude
1
,, ,
j
n
j
jjkvmk mrlsv
mk
.,,1 qm (4)
Equations (4) describe the dynamics of n PSS (i.e. local dynamics) coupled
by the gradient of a coupling potential V (i.e. coupling dynamics) with frequency
Adaptation of Oscillatory Systems in Networks — A Learning Signal Approach
Системні дослідження та інформаційні технології, 2014, № 2 59
adaptation (i.e. time scale adaptive mechanisms) and attractor shaping (i.e. ampli-
tude adaptive mechanisms). For Equations (4), we have 1q constants of motion,
the existence of a consensual oscillatory state and the convergence towards it.
12 q Constants of Motion
The functions
,)(
1
0,
0
0,
0
n
k
k
k
s
J
,)(
1
,
,
n
k
mk
m
mk
m s
J
,)(
1
,
,
n
k v
mk
mv
mk
m s
v
vJ qm ,,1 (5)
with ,),,( 0,0,10 n ),,( ,,1 mnmm , and ),,( ,,1 mnmm vvv are constants
of motion. Indeed, if ,)(0 t ,)(tm )(tvm for qm ,,1 are orbits of Equa-
tions (4), then
n
k
n
j
jjk rl
dt
tJd
1 1
,
0
,
))](([
0
n
k
j
n
j
jjk
m
mrl
dt
tJd
m
1 1
, ,)(cos,
))](([
n
k
j
n
j
jjk
mv
mrl
dt
tvJd
m
1 1
, ,)(sin,
))](([
qm ,,1
by Lemma D.2 in [6]. If we further suppose that ),(
1
r
Vn
k k
for all ),( r
(and this is true for both types of coupling potentials in Example 1), then Equa-
tions (4) admit another constant of motion, namely
n
k
k
k
s
J
1
)(
with
.1 ),,( n
Existence of a Consensual Oscillatory State
Equations (4) admit a consensual oscillatory state. Indeed, for given common
constants ,,,,,,,( ,,1,1,0, qcqcccccc vv
),),(,())(),(),(( ccckkk tFtttrt nk ,,1 (7)
is a consensual orbit of Equations (4), with here cF taking the value .c Indeed,
since points given by Equations (7) are extrema of the ,V then the coupling dy-
namics and the adaptive time scale mechanisms are zero. Hence, )(tk is a con-
stant taking value c for all ,k and ))(,())(),(( tFttrt cckk solves each local
dynamics and cancels all amplitude adaptive mechanisms for all .k Therefore
))(),(,),(),((),(( ,,1,1,0, tvttvtt qkqkkkk are constants taking, respectively,
common values ,,,,,,( ,,1,1,0, qcqcccc vv for all .k
Julio Rodriguez
ISSN 1681–6048 System Research & Information Technologies, 2014, № 2 60
Convergence Towards a Consensual Oscillatory State
If perturbations are introduced in Equations (7), we say that System (4) converges
towards a consensual oscillatory state if we have the following limit
ktFtttrt ccckkk
t
0)}),(),(()(),(),({lim (8)
with constant .c This limit raises two problems: determining the limit values
c and finding the conditions for convergence.
Limit Values. If the constant of motion in Equation (6) exists and if Limit
(8) holds, then, thanks to all the other constants of motion in Equations (5), we have
,
1
)1())(lim())((lim))0((
1
n
k
cc
tt
k
s
JtJtJJ
,
1
)1())(lim())((lim))0((
1
0,0,000
0,
0000
n
k
cc
tt
k
s
JtJtJJ
,
1
)1())(lim())((lim))0((
1
,,
,
n
k
mcmcm
t
m
t
m
mk
mmmm s
JtJtJJ
n
k v
mcmcvm
t
vmv
t
mv
mk
mmmm s
vvJtvJtvJvJ
1
,,
,
1
)1())(lim())((lim))0((
for .,,1 qm Hence, the consensual values of c are analytically expressed as
,
1
)0(
,
1
)0(
1
1
0,
0,
1
1
0,
0,
n
k
n
k
j
cn
k
n
k
k
c
k
k
k
k
s
s
s
s
,,,1 qm
,
1
)0(
,
1
)0(
1
1
,
,
1
1
,
,
,
,
,
,
n
k v
n
k
mj
mcn
k
n
k
mj
mc
mk
mk
mk
mk
s
s
v
s
s
.,,1 qm (9)
Convergence Conditions. To prove the convergence in Limit (8), one can
linearize Equations (4) around a consensual oscillatory state. In general, the re-
sulting )24()24( qnqn Jacobian depends explicitly on time (since evaluated
on a consensual oscillatory state) and therefore Floquet exponents have to be
computed. Note that for certain coupling potentials V and assumptions on the
coupling strengths and susceptibility constants, the Jacobian can be diagonalized
in order to reduce the computation of Floquet exponents to n systems, each of
size .)24()24( qq
We emphasize that numerous numerical simulations show that Limit (8)
holds — and this for different topologies, coupling potential and values of coupling
Adaptation of Oscillatory Systems in Networks — A Learning Signal Approach
Системні дослідження та інформаційні технології, 2014, № 2 61
strengths and susceptibility constants. For these numerical experiments, the cou-
pling strengths were set around one and susceptibility constants around .1.0
REMARK: ADAPTATION
Here, adaptation is to be interpreted as an asymptotic stability problem, which is
directly related to the study of Limit (8). Indeed, for initially different PSS, if
Limit (8) holds, then the adaptive mechanisms, with the help of the coupling dy-
namics, drive all local systems towards a consensual oscillatory state as defined in
Equations (7). Once this state is reached, the coupling dynamics, as well as the
adaptive mechanisms, may be removed — and all PSS will still continue to de-
liver the same signal with the same time scale (i.e. local system are no longer de-
pendent on their environment to produce common dynamical patterns). This is
because the values k have been permanently modified (i.e. .))(lim ck
t
t
If
the adaptive mechanisms are not switched on initially, dynamical patterns may
occur (due to the coupling dynamics) — but these are maintained because of the
network interactions. If the interactions are removed, all PSS converge back to-
wards their own shape, which is determined by k and their own time scale,
given by .kw
3.1. Miscellaneous Remark: Time Scale or Amplitude Adaptation Only
We present here two alternatives of System (4). One alternative concerns ampli-
tude kr adaptation only (Section 3.1.1), whereas the other deals with time scale
k adaptation only (Section 3.1.2).
3.1.1. Amplitude Adaptation Only
Consider Equations (4) with no phases k (and hence no time scale adaptive
mechanisms), and for each local PSS, let ttk )( for all .k The system becomes
,)()())((
dynamicscoupling
dynamicslocal
r
r
V
ctFtFrr
k
kkkkk
,
1
,0, 0,
n
j
jjkk rls
k ,,,1 nk
),()(cos
,, r
r
V
mts
k
mk mk
,,,1 nk
,)()(sin
mechanismsadaptiveamplitude
, ,
r
r
V
mtsv
k
vmk mk
.,,1 qm (10)
with .)(sin)(cos)(
1
,,0,
q
m
mkmkkk mtvmttF Note that for Equations (10)
we still have 1q constants of motion (as given in Equations (5)), the existence
Julio Rodriguez
ISSN 1681–6048 System Research & Information Technologies, 2014, № 2 62
of a consensual oscillatory state )),(())(),(( cckk tFttr for ,,,1 nk and
the convergence towards it (i.e. 0})),(())(),(({lim
cckk
t
tFttr for all )k as
observed by numerous numerical simulations.
A priori, Equations (10) describe a system where adaptation only occurs on
the shape of the local attractors. However, by adequately setting the value of one
or several constants of motion in Equations (5), one can cancel the asymptotic
values of the corresponding coefficients. Thus, by changing the shape of the sig-
nal, one can change its frequency.
3.1.2. Time scale Adaptation Only
We here remark that PSS (i.e. belonging to the class of PR System) can be
slightly modified in order to be seen as Ortho-Gradient (OG) systems. For a pre-
cise definition and examples, see Section 1.1.1 in [6]. Briefly, OG systems are
characterized by dissipative dynamics that are orthogonal to their canonical — or
here, oscillatory-dynamics. Let us consider the following network of PSS that are
also OG systems, and where there is only time scale adaptation
,)()())((
dynamicscoupling
k
kkkkkk
V
cFFr
,))(()(
dynamicslocal
kkkkkk FrFr ,,,1 nk (11)
.)(
mechanismsadaptivescaletime
k
k
V
s
k
As shown in Lemma 1.1 in [6], each local dynamics in Equations (11), taken
individually, possesses its own attractor given by . Networks of OG systems
with adapting angular velocities have been studied. For the particular type of cou-
pling dynamics and time scale adaptive mechanisms (i.e. only on variables k ),
one can directly apply Proposition 2.2 in [6] to show that System (11) converges
towards a consensual oscillatory state with consensual value c as in Equations
(9). For this convergence, one needs to suppose that )(|1 V for all and to
make a technical hypothesis on .V
4. NUMERICAL SIMULATIONS
We report two sets of numerical simulations, one with time scale and amplitude
adaptation (refer to Section 4.1.) and one with amplitude adaptation only (refer to
Section 4.2.).
4.1. Time Scale and Amplitude Adaptation
We consider 39 PSS as in Equations (4) with network topology as in Fig. 2,a).
Here, each PSS is given by
3
1
,,0, )(sin)(cos)(
m
mkmkkk mvmF for
Adaptation of Oscillatory Systems in Networks — A Learning Signal Approach
Системні дослідження та інформаційні технології, 2014, № 2 63
.39,,1k The coupling strengths and susceptibility constants are ,1kc
1.0
,,0,
mkmkkk vssss for 39,,1k and .3,2,1m A Laplacian po-
tential, as in Example 1, is used for the coupling dynamics. The initial conditions
))0(),0(),0(),0(),0(),0(),0(),0(),0(( 3,3,2,2,1,1,0, kkkkkkkkk vvv are randomly
uniformly drawn from 3][5,5][2,2][1,1][,] hhhhhhhh
[5,5][7,7][3, hhhhhh with .225.0h These initial con-
ditions determine ,)0(kF and finally, the initial conditions )0(kr are randomly
uniformly drawn from .[)0(,)0(] hFhF kk
The resulting dynamics for the variables ,kr k and 2,kv is shown in Fig. 3.
Note that the variables kr converge quickly towards a common signal, whereas
Fig. 2. Two 39-vertex Network Topologies, “Manhattan” 2,a and Metro of Kyiv 2,b
a b
Fig. 3. Time evolution of kr (Fig. 3,a), ωk (Fig. 3,b) and 2,kv (Fig. 3,c) for 39 PSS,
interacting through the network in (Fig. 2,a)
rk ωk
a b
State variables rk State variables ωk
vk,2
c
State variables vk,2
Julio Rodriguez
ISSN 1681–6048 System Research & Information Technologies, 2014, № 2 64
the variables k and 2,kv take more time to converge towards their asymptotic
values. This is due to a relatively strong coupling strength compared to the sus-
ceptibility constants. For this setup, we have always observed convergence to-
wards a consensual oscillatory state. With the same setup, but with a network as
in Fig. 2,b, convergence was not observed for all numerical experiments — as we
report in Fig. 4,a–c. However, for the exact same initial conditions as in Fig. 4,
if all adaptive mechanisms are switched off (i.e. all susceptibility constants are
zero), the network is still able to synchronize as shown in Fig. 4,d.
4.2. Amplitude Adaptation Only
Two PSS with amplitude adaptation only as in Equations (10) are considered,
with here
3
1
,,0, )(sin)(cos)(
m
mkmkkk mtvmttF for .2,1k The coup-
ling strengths and susceptibility constants are ,2kc
mkmkk vsss
,,0,
5.0 for .2,1k and .3,2,1m The coupling potential is .)(
2
1
)( 2
21 rrrV
State variables rk State variables ωk
rk
ωk
a b
State variables vk,2 State variables rk
vk,2
c d
Fig. 4. Time evolution of kr (Fig. 4,a), k (Fig. 4,b) and 2,kv (Fig. 4,d) for 39 PSS, interact-
ing through the network in (Fig. 2,b). Time evolution of kr for 39 PSS with all their adaptive
mechanisms switched off (i.e. all susceptibility constants are zero), interacting through the
network in (Fig. 2,d)
Adaptation of Oscillatory Systems in Networks — A Learning Signal Approach
Системні дослідження та інформаційні технології, 2014, № 2 65
The initial conditions ))0(),0()0(),0(),0(),0(( 3,23,23,13,10,20,1 vv are ran-
domly uniformly drawn from ,8.4][2.5,8.4][2.3,8.2][2.1,8.0][2.1,8.0]
,[8.6,2.7][2.5 and the others given by ))0(),0(),0(),0(( 2,12,11,11,1 vv
)1,1,2,2( and .)1,1,2,2())0(),0(),0(),0(( 2,22,21,21,2 vv These initial
conditions determine ,)0(kF and finally, the initial conditions )0(kr are randomly
uniformly drawn from [2.0)0(,2.0)0(] 11 kFkF for .2,1k
The resulting dynamics for variables kr and 1,k is shown in Fig. 5. For
]15,0[t , the coupling dynamics and the adaptive mechanisms are switched off
and so each PSS generates its individual signal. Because of the choice of the ini-
tial conditions ))0(),0(( ,, mkmk v ,2,1, mk the asymptotic values are
)0,0())0(),0()][( ,, mcmc v for ,2,1m and so both amplitudes )(1 tr and )(2 tr
converge towards )3(sin)3(cos)( 3,3, tvttF ccc (i.e. Fourier series with mode
)3(cos t and )3(sin t only). As a consequence, )(tFc has a higher frequency than
any of the two signals before interactions are switched on. This is observed in
Fig. 5,a where the two signals have a larger period in the interval ]15,0[ than
when they are close to .)(tFc
5. CONCLUSION
PSS form a suitable class of systems to investigate the interaction of multi-signal
dynamics. Whereas adapting the time scale is a fairly straightforward procedure,
shaping the attractor is more complicated. Nevertheless, our dynamical systems
show that this can be implemented in a robust manner. The adaptive mechanisms
depend solely on the state variables, and no pre-calculations or information on the
curvature of the attractor is needed.
Fig. 5. Time evolution of kr (Fig. 5,a) and 1,k (Fig. 5,b) for two PSS. Coupling dy-
namics and adaptive mechanisms are switched on a 15t (black solid line).
State variables rk
rk
a b
State variables µk,1
µk,1
Julio Rodriguez
ISSN 1681–6048 System Research & Information Technologies, 2014, № 2 66
The asymptotic values from the resulting dynamics are analytically calcula-
ble. The network’s topology and the nature of the coupling potential itself directly
influence the conditions for attaining a consensual oscillatory state. Determining
basins of attraction with respect to connectivity and coupling functions remains an
open question.
Apart from investigating the resulting dynamics for directed network
connections with time-dependent edges, prospective works would also include
merging two adapting PSS communities — one belonging to the class of systems
given by Equations (4), and the other described by Systems (10).
APPENDIX A: CONVERGENCE TOWARDS COMPACT SET
The convergence towards the compact set }0)(|),{( 1 Frrk fol-
lows from Lyapunov’s second method with Lyapunov function
2))((
2
1
),( FrrL . By construction, we have that rr |),{( 1
.}0)( L Computing the time derivative
),(|),( rrL rFrFFr ))(()())((
))())((())(()())(( wFFrFrwFFr = .))(( 2Fr
Hence, ),(|),( rrL for all \)(),( 1 r .
ACKNOWLEDGMENTS
The author thanks Prof. Alexander Makarenko for the interesting conference
“NONLINEAR ANALYSIS AND APPLICATIONS” (2nd Conference in mem-
ory of corresponding member of the National Academy of Science of Ukraine,
Valery Sergeevich Melnik, Ukraine, Kyiv, 4–6 April, 2012) for which he was the
main organizer. This work was mainly developed before and at the conference.
The author acknowledges the support from the DFG-IRTG 1132 (Deutsche For-
schungsgemeinschaft — International Research Training Group) under the project
entitled “Internationales Graduiertenkolleg — Stochastics and Real World
Models”.
REFERENCES
1. Acebrón J., Spigler R. Adaptive frequency model for phase-frequency synchroniza-
tion in large populations of globally coupled nonlinear oscillators // Physical Re-
view Letters. — 1998. — № 81. — P. 2229–2232.
2. De Lellis P., di Bernardo M., Gorochowski T.E., Russo G. Synchronization and con-
trol of complex networks via contraction, adaptation and evolution // IEEE Cir-
cuits and Systems Magazine. — 2010. — № 10. — P. 64–82.
Adaptation of Oscillatory Systems in Networks — A Learning Signal Approach
Системні дослідження та інформаційні технології, 2014, № 2 67
3. Ermentrout B. An adaptive model for synchrony in the firefly pteroptyx malaccae //
Journal of Mathematical Biology. — 1991. — № 29. — P. 571–585.
4. Gershgorin S.A. Über die Abgrenzung der Eigenwerte einer Matrix // Izvestiya
Akademii Nauk USSR, Otdelenie matematicheskih i estestvennih Nauk. —
1931. — № 7. — P. 749–754.
5. Lehnert J., Hövel P., Flunkert V., Guzenko P.Y., Fradkov A.L., Schöll E. Adaptive
tuning of feedback gain in time-delayed feedback control // Chaos. — 2011. —
№ 21.
6. Rodriguez J. Networks of Self-Adaptive Dynamical Systems. PhD thesis, Ecole
Polythechnique Fédérale de Lausanne, 2011. —100 р.
7. Rodriguez J., Hongler M.-O. Networks of Self-Adaptive Dynamical Systems. IMA
Journal of Applied Mathematics (2012). doi: 10.1093/imamat/hxs057.
8. Rodriguez J., Hongler M.-O., Blanchard Ph. Self-Adaptive Attractor-Shaping for
Oscillators Networks. In Proceedings of The Joint INDS’11 & ISTET’11 – Third
International Workshop on Nonlinear Dynamics and Synchronization and Six-
teenth International Symposium on Theoretical Electrical Engineering, 2011. —
P. 1–6.
9. Rodriguez J., Hongler M.-O., Blanchard Ph. Self-Shaping Attractors for Coupled
Limit Cycle Oscillators. In Selected Topics in Nonlinear Dynamics and Theoretical
Electrical Engineering. — K. Kyamakya, W.A. Halang, W. Mathis,
J.C. Chedjou, Z. Li (Eds.), vol. 483 of Studies in Computational Intelligence.
Springer (Berlin Heidelberg), 2013. — P. 97–115.
10. Tanaka H.-A., Lichtenberg A.J., Oishi S. Self-synchronization of coupled oscillators
with hysteretic responses // Physica D. —1997. — № 100. — P. 279–300.
Received 23.07.2013
From the Editorial Board: the article corresponds completely to submitted manu-
script.
|