2025-02-24T04:48:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-855%22&qt=morelikethis&rows=5
2025-02-24T04:48:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-855%22&qt=morelikethis&rows=5
2025-02-24T04:48:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-24T04:48:29-05:00 DEBUG: Deserialized SOLR response
Принцип отражения в плоских граничных задачах для уравнения Гельмгольца
В данной работе рассмотрены возможности использования принципа отражения при построении решений внутренних и внешних граничных задач для уравнения Гельмгольца в плоских областях, границы которых содержат прямолинейные отрезки. Основная идея подхода заключается в том, чтобы пользуясь формулой отражен...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Інститут гідромеханіки НАН України
1998
|
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/855 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | В данной работе рассмотрены возможности использования принципа отражения при построении решений внутренних и внешних граничных задач для уравнения Гельмгольца в плоских областях, границы которых содержат прямолинейные отрезки. Основная идея подхода заключается в том, чтобы пользуясь формулой отражения для решения уравнения Гельмгольца через прямолинейные отрезки границы (при однородных граничных условиях), продолжить искомое решение в такую каноническую область как круг. В этом случае решение граничной задачи выражается через ряды по частным решениям уравнения Гельмгольца в полярных координатах и для определения неизвестных коэффициентов этих рядов возможно получить бесконечную систему линейных алгебраических уравнений. При этом замыкающие уравнения на участках окружности, не являющихся физическими границами исходной области, формулируются исходя из способа отражения искомого решения. Рассмотрены различные примеры граничных задач для уравнения Гельмгольца для прямолинейно-круговой луночки (внутренняя и внешняя задачи). Показано каким образом возможно учесть локальные особенности волнового поля, связанные с угловыми точками рассматриваемой области и смешанным характером граничных условий. Для одной из задач проведены численные расчеты, свидетельствующие об эффективности предложенного подхода. |
---|