Класифікація функціональних даних за допомогою сплайнів з вільними вузлами

У багатьох прикладних задачах дані, що були отримані на основі вимірювань певного процесу, концептуально можна розглядати як функції неперервного аргументу. Аналіз таких даних, що прийнято називати «функціональними», значно ускладнюється порівняно з аналізом багатовимірних даних. Функціональні дані...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Коршунова, І.А.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2014
Назва видання:Системні дослідження та інформаційні технології
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/85504
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Класифікація функціональних даних за допомогою сплайнів з вільними вузлами / І.А. Коршунова // Системні дослідження та інформаційні технології. — 2014. — № 2. — С. 115-124. — Бібліогр.: 11 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-85504
record_format dspace
spelling irk-123456789-855042015-08-07T03:02:15Z Класифікація функціональних даних за допомогою сплайнів з вільними вузлами Коршунова, І.А. Нові методи в системному аналізі, інформатиці та теорії прийняття рішень У багатьох прикладних задачах дані, що були отримані на основі вимірювань певного процесу, концептуально можна розглядати як функції неперервного аргументу. Аналіз таких даних, що прийнято називати «функціональними», значно ускладнюється порівняно з аналізом багатовимірних даних. Функціональні дані за допомогою відображення у вектори вільних вузлів апроксимуючих сплайнів практично без втрати інформації можна звести до вигляду, зручного для традиційних статистичних алгоритмів. Знаходження вільних вузлів сплайна є складною задачею оптимізації, для вирішення якої в цій роботі представлено новий евристичний метод. Не менш важливим етапом є вибір кількості параметрів апроксимаційної моделі, для чого було розроблено підхід на основі багатокритеріальної оптимізації за часом обчислення вузлів та точності апроксимації. Застосування сплайнів для класифікації функціональних даних було продемонстровано на задачі діагностики артриту за формою кісток. Во многих прикладных задачах, которые были получены на основе измерений определенного процесса концептуально можно рассматривать как функции непрерывного аргумента. Анализ таких данных, которые принято называть «функциональными», значительно усложняется по сравнению с анализом обычных многомерных данных. Функциональные данные при помощи отображения в векторы свободных узлов аппроксимирующих сплайнов практически без потери информации можно привести к виду, удобного для традиционных статистических алгоритмов. Нахождение свободных узлов является сложной задачей оптимизации, для решения которой в данной работе представлен новый эвристический метод. Не менее важным этапом есть выбор количества параметров аппроксимационной модели, для чего был разработан подход на основе многокритериальной оптимизации по времени вычисления узлов и точности аппроксимации. Применение сплайнов для классификации функциональных данных было продемонстрировано на задаче диагностики артрита по форме костей. Data, obtained through measurements of some process, in many problems, can be treated as functions of a continuous argument. An analysis of such "functional" data is much more complicated than multivariate data analysis. Functional data can be reflected into an appropriate form for traditional statistical algorithms with the help of free -knot splines, which causes almost no loss of information. Finding the free knots of spline is a complex optimization problem, so this paper presents a new heuristic method in order to solve it. An equally important step is to select the parameters of the approximation model. To deal with it, we developed a new approach, which is based on multi-objective optimization of computation time and the accuracy of approximation. The use of splines for classification of functional data was demonstrated on the problem of diagnosis of arthritis based on the bone shapes. 2014 Article Класифікація функціональних даних за допомогою сплайнів з вільними вузлами / І.А. Коршунова // Системні дослідження та інформаційні технології. — 2014. — № 2. — С. 115-124. — Бібліогр.: 11 назв. — укр. 1681–6048 http://dspace.nbuv.gov.ua/handle/123456789/85504 519.21 uk Системні дослідження та інформаційні технології Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
spellingShingle Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
Коршунова, І.А.
Класифікація функціональних даних за допомогою сплайнів з вільними вузлами
Системні дослідження та інформаційні технології
description У багатьох прикладних задачах дані, що були отримані на основі вимірювань певного процесу, концептуально можна розглядати як функції неперервного аргументу. Аналіз таких даних, що прийнято називати «функціональними», значно ускладнюється порівняно з аналізом багатовимірних даних. Функціональні дані за допомогою відображення у вектори вільних вузлів апроксимуючих сплайнів практично без втрати інформації можна звести до вигляду, зручного для традиційних статистичних алгоритмів. Знаходження вільних вузлів сплайна є складною задачею оптимізації, для вирішення якої в цій роботі представлено новий евристичний метод. Не менш важливим етапом є вибір кількості параметрів апроксимаційної моделі, для чого було розроблено підхід на основі багатокритеріальної оптимізації за часом обчислення вузлів та точності апроксимації. Застосування сплайнів для класифікації функціональних даних було продемонстровано на задачі діагностики артриту за формою кісток.
format Article
author Коршунова, І.А.
author_facet Коршунова, І.А.
author_sort Коршунова, І.А.
title Класифікація функціональних даних за допомогою сплайнів з вільними вузлами
title_short Класифікація функціональних даних за допомогою сплайнів з вільними вузлами
title_full Класифікація функціональних даних за допомогою сплайнів з вільними вузлами
title_fullStr Класифікація функціональних даних за допомогою сплайнів з вільними вузлами
title_full_unstemmed Класифікація функціональних даних за допомогою сплайнів з вільними вузлами
title_sort класифікація функціональних даних за допомогою сплайнів з вільними вузлами
publisher Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
publishDate 2014
topic_facet Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
url http://dspace.nbuv.gov.ua/handle/123456789/85504
citation_txt Класифікація функціональних даних за допомогою сплайнів з вільними вузлами / І.А. Коршунова // Системні дослідження та інформаційні технології. — 2014. — № 2. — С. 115-124. — Бібліогр.: 11 назв. — укр.
series Системні дослідження та інформаційні технології
work_keys_str_mv AT koršunovaía klasifíkacíâfunkcíonalʹnihdanihzadopomogoûsplajnívzvílʹnimivuzlami
first_indexed 2023-10-18T19:31:16Z
last_indexed 2023-10-18T19:31:16Z
_version_ 1796147186683084800