Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере

Рассмотрена проблема прогнозирования финансовых процессов на рынках ценных бумаг. Для ее решения предложено применение каскадных нео-фаззи нейронных сетей. Описана архитектура этих сетей, рассмотрены алгоритмы обучения — градиентный и Уидроу-Хоффа. Рассмотрена проблема синтеза структуры нео-фаззи ка...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Зайченко, Ю.П.
Формат: Стаття
Мова:Russian
Опубліковано: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2014
Назва видання:Системні дослідження та інформаційні технології
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/85553
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере / Ю.П. Зайченко // Системні дослідження та інформаційні технології. — 2014. — № 3. — С. 50-63. — Бібліогр.: 4 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-85553
record_format dspace
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Теоретичні та прикладні проблеми і методи системного аналізу
Теоретичні та прикладні проблеми і методи системного аналізу
spellingShingle Теоретичні та прикладні проблеми і методи системного аналізу
Теоретичні та прикладні проблеми і методи системного аналізу
Зайченко, Ю.П.
Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере
Системні дослідження та інформаційні технології
description Рассмотрена проблема прогнозирования финансовых процессов на рынках ценных бумаг. Для ее решения предложено применение каскадных нео-фаззи нейронных сетей. Описана архитектура этих сетей, рассмотрены алгоритмы обучения — градиентный и Уидроу-Хоффа. Рассмотрена проблема синтеза структуры нео-фаззи каскадной сети и предложен алгоритм МГУА для ее решения. Проведены экспериментальные исследования точности прогнозирования биржевых индексов с применением указанных методов обучения в зависимости от числа каскадов, числа входных переменных и их лингвистичеcких значений и оценена их эффективность. Проведенные исследования показали, что каждый алгоритм имеет свои сильные и слабые стороны. Градиентный метод может давать более точные прогнозы, но при этом время его работы достаточно большое. Алгоритм Уидроу-Хоффа, наоборот, дает прогноз за очень короткое время, но имеет довольно большие отклонения от реальных значений. В целом, каскадная нео-фаззи нейронная сеть является хорошим инструментом для прогнозирования финансовых процессов на фондовых рынках в условиях неопределенности и неполноты информации. При этом ее прогноз значительно точнее в сравнении с классическими нечеткими нейронными сетями ANFIS и TSK, а также ННС с выводом Мамдани.
format Article
author Зайченко, Ю.П.
author_facet Зайченко, Ю.П.
author_sort Зайченко, Ю.П.
title Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере
title_short Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере
title_full Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере
title_fullStr Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере
title_full_unstemmed Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере
title_sort исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере
publisher Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
publishDate 2014
topic_facet Теоретичні та прикладні проблеми і методи системного аналізу
url http://dspace.nbuv.gov.ua/handle/123456789/85553
citation_txt Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере / Ю.П. Зайченко // Системні дослідження та інформаційні технології. — 2014. — № 3. — С. 50-63. — Бібліогр.: 4 назв. — рос.
series Системні дослідження та інформаційні технології
work_keys_str_mv AT zajčenkoûp issledovaniekaskadnyhneofazzinejronnyhsetejvzadačahprognozirovaniâvfinansovojsfere
first_indexed 2023-10-18T19:31:23Z
last_indexed 2023-10-18T19:31:23Z
_version_ 1796147191888216064
spelling irk-123456789-855532015-08-08T03:01:38Z Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере Зайченко, Ю.П. Теоретичні та прикладні проблеми і методи системного аналізу Рассмотрена проблема прогнозирования финансовых процессов на рынках ценных бумаг. Для ее решения предложено применение каскадных нео-фаззи нейронных сетей. Описана архитектура этих сетей, рассмотрены алгоритмы обучения — градиентный и Уидроу-Хоффа. Рассмотрена проблема синтеза структуры нео-фаззи каскадной сети и предложен алгоритм МГУА для ее решения. Проведены экспериментальные исследования точности прогнозирования биржевых индексов с применением указанных методов обучения в зависимости от числа каскадов, числа входных переменных и их лингвистичеcких значений и оценена их эффективность. Проведенные исследования показали, что каждый алгоритм имеет свои сильные и слабые стороны. Градиентный метод может давать более точные прогнозы, но при этом время его работы достаточно большое. Алгоритм Уидроу-Хоффа, наоборот, дает прогноз за очень короткое время, но имеет довольно большие отклонения от реальных значений. В целом, каскадная нео-фаззи нейронная сеть является хорошим инструментом для прогнозирования финансовых процессов на фондовых рынках в условиях неопределенности и неполноты информации. При этом ее прогноз значительно точнее в сравнении с классическими нечеткими нейронными сетями ANFIS и TSK, а также ННС с выводом Мамдани. Розглянуто проблему прогнозування фінансових процесів на ринках цінних паперів. Для її розв’язку запропоновано застосування каскадних нео-фаззі нейронних мереж. Описано архітектуру цих мереж, розглянуто алгоритми навчання — градієнтний та Уідроу-Хоффа. Розглянуто проблему синтезу структури нео-фаззі каскадної мережі та запропоновано алгоритм МГУА для його розв’язання. Проведено експериментальні дослідження точності прогнозування біржових індексів із застосуванням зазначених методів навчання в залежності від кількості каскадів, кількості вхідних змінних та їх лінгвістичних значень й оцінено їхню ефективність. Проведені дослідження показали, що кожний алгоритм має свої сильні та слабкі властивості. Градієнтний метод може давати більш точні прогнози, при цьому час його роботи досить значний. Алгоритм Уідроу–Хоффа, навпаки, дає прогноз за дуже короткий час, але має досить великі відхилення від реальних значень. В цілому, каскадна нео-фаззі нейронна мережа є ефективним інструментом для прогнозування фінансових процесів на фондових ринках в умовах невизначеності та неповноти інформації. При цьому її прогноз більш точний у порівнянні з класичними нечіткими нейромережами ANFIS та TSK, а також нечіткою мережею з висновком Мамдані. The problem of stock prices forecasting at stock exchanges is considered. The application of cascade neo-fuzzy neural networks (CNFNN) for its solution is suggested. The architecture and training algorithms (gradient and Widrow-Hoff) for CNFNN networks are considered. The experimental investigations of stock prices forecasting accuracy with application of CNFNN network depending on the number of cascades, the number of input variables and their linguistic values were carried out and the efficiency of training methods was estimated. The investigations had shown that each algorithm had strong and weak properties. The Gradient method may give more accurate forecasting, but it needs a lot of time for work. The runtime of Widrow- Hoff algorithm is short, but its accuracy of forecasting is worse. In a whole, CNFNN is the efficient tool for forecasting at stock exchanges under uncertainty. Its forecasting proves to be much more accurate in comparison with classical fuzzy neural networks ANFIS, TSK, and Mamdani. 2014 Article Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере / Ю.П. Зайченко // Системні дослідження та інформаційні технології. — 2014. — № 3. — С. 50-63. — Бібліогр.: 4 назв. — рос. 1681–6048 http://dspace.nbuv.gov.ua/handle/123456789/85553 518.9 ru Системні дослідження та інформаційні технології Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України