Модули над групповыми кольцами обобщенно разрешимых групп
Пусть A — RG-модуль такой, что R — коммутативное кольцо, A/CA(G) не является нетеровым R-модулем (соответственно A/CA(G) не является артиновым R-модулем, A/CA(G) не является минимаксным R-модулем), CG(A) = 1, G — гипер(локально разрешимая) группа. Описаны свойства гипер(локально разрешимой) группы...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2013
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/85888 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Модули над групповыми кольцами обобщенно разрешимых групп / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 9. — С. 29–32. — Бібліогр.: 14 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-85888 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-858882015-09-01T03:02:02Z Модули над групповыми кольцами обобщенно разрешимых групп Дашкова, О.Ю. Математика Пусть A — RG-модуль такой, что R — коммутативное кольцо, A/CA(G) не является нетеровым R-модулем (соответственно A/CA(G) не является артиновым R-модулем, A/CA(G) не является минимаксным R-модулем), CG(A) = 1, G — гипер(локально разрешимая) группа. Описаны свойства гипер(локально разрешимой) группы G такой, что любая собственная подгруппа H группы G, для которой A/CA(H) не является нетеровым R-модулем (соответственно A/CA(H) не является артиновым R-модулем, A/CA(H) не является минимаксным R-модулем), конечно порождена. Нехай A — RG-модуль такий, що R — комутативне кiльце, A/CA(G) не є нетеровим R-модулем (вiдповiдно A/CA(G) не є артиновим R-модулем, A/CA(G) не є мiнiмаксним R-модулем), CG(A) = 1, G — гiпер(локально розв’язна) група. Описано властивостi гiпер(локально розв’язної) групи G такої, що кожна власна пiдгрупа H групи G, для якої A/CA(H) не є нетеровим R-модулем (вiдповiдно A/CA(H) не є артиновим R-модулем, A/CA(H) не є мiнiмаксним R-модулем), скiнченно породжена. Let A be an RG-module, where R is a commutative ring, A/CA(G) is not a Noetherian R-module (respectively, A/CA(G) is not an Artinian R-module, and A/CA(G) is not a minimax R-module), CG(A) = 1, G is a hyper(locally soluble) group. We describe the properties of a hyper(locally soluble) group G such that each proper subgroup H of G, for which A/CA(H) is not a Noetherian R–module (respectively, A/CA(H) is not an Artinian R-module, and A/CA(H) is not a minimax R-module) is finitely generated. 2013 Article Модули над групповыми кольцами обобщенно разрешимых групп / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 9. — С. 29–32. — Бібліогр.: 14 назв. — рос. 1025-6415 http://dspace.nbuv.gov.ua/handle/123456789/85888 512.544 ru Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Математика Математика |
spellingShingle |
Математика Математика Дашкова, О.Ю. Модули над групповыми кольцами обобщенно разрешимых групп Доповіді НАН України |
description |
Пусть A — RG-модуль такой, что R — коммутативное кольцо, A/CA(G) не является нетеровым R-модулем (соответственно A/CA(G) не является артиновым R-модулем, A/CA(G) не является минимаксным R-модулем), CG(A) = 1, G — гипер(локально
разрешимая) группа. Описаны свойства гипер(локально разрешимой) группы G такой,
что любая собственная подгруппа H группы G, для которой A/CA(H) не является нетеровым R-модулем (соответственно A/CA(H) не является артиновым R-модулем, A/CA(H) не является минимаксным R-модулем), конечно порождена. |
format |
Article |
author |
Дашкова, О.Ю. |
author_facet |
Дашкова, О.Ю. |
author_sort |
Дашкова, О.Ю. |
title |
Модули над групповыми кольцами обобщенно разрешимых групп |
title_short |
Модули над групповыми кольцами обобщенно разрешимых групп |
title_full |
Модули над групповыми кольцами обобщенно разрешимых групп |
title_fullStr |
Модули над групповыми кольцами обобщенно разрешимых групп |
title_full_unstemmed |
Модули над групповыми кольцами обобщенно разрешимых групп |
title_sort |
модули над групповыми кольцами обобщенно разрешимых групп |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2013 |
topic_facet |
Математика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/85888 |
citation_txt |
Модули над групповыми кольцами обобщенно разрешимых групп / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 9. — С. 29–32. — Бібліогр.: 14 назв. — рос. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT daškovaoû modulinadgruppovymikolʹcamiobobŝennorazrešimyhgrupp |
first_indexed |
2023-10-18T19:32:10Z |
last_indexed |
2023-10-18T19:32:10Z |
_version_ |
1796147227459059712 |