Об использовании априорной информации в регрессионном анализе

Розглянуто методи оцінювання параметрів регресії з урахуванням невизначеної апріорної інформації двох видів: нечіткої і стохастичної. Вважається, що нечітка апріорна інформація формулюється на основі нечітких уявлень конструктора моделі. У якості стохастичної апріорної інформації розглядаються ліній...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Корхин, А.С.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2013
Назва видання:Кибернетика и системный анализ
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/86164
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Об использовании априорной информации в регрессионном анализе / А.С. Корхин // Кибернетика и системный анализ. — 2013. — Т. 49, № 1. — С. 49-64. — Бібліогр.: 17 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглянуто методи оцінювання параметрів регресії з урахуванням невизначеної апріорної інформації двох видів: нечіткої і стохастичної. Вважається, що нечітка апріорна інформація формулюється на основі нечітких уявлень конструктора моделі. У якості стохастичної апріорної інформації розглядаються лінійні за параметрами регресії системи рівнянь, правими частинами яких є випадкові величини. Параметри регресії можуть бути як постійними, так і змінними у часі величинами. Запропоновано класифікацію методів оцінювання, що використовують невизначену апріорну інформацію, на основі якої одержано узагальнення відомих методів, а також розроблено метод оцінювання, що дозволяє поєднувати нечітку і стохастичну апріорну інформацію про параметри регресії.