Обобщенно разрешимые AFF-группы
Изучен RG-модуль A такой, что R — ассоциативное кольцо, CG(A) = 1, и любая собственная подгруппа H группы G, для которой R-модуль A/CA(H) бесконечен, конечно порождена. Группа G, удовлетворяющая заданным условиям, называется AFF-группой. Доказано, что локально разрешимая AFF-группа гиперабелева. Оп...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2013
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/86180 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Обобщенно разрешимые AFF-группы / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 10. — С. 18–22. — Бібліогр.: 9 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-86180 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-861802015-09-10T03:02:07Z Обобщенно разрешимые AFF-группы Дашкова, О.Ю. Математика Изучен RG-модуль A такой, что R — ассоциативное кольцо, CG(A) = 1, и любая собственная подгруппа H группы G, для которой R-модуль A/CA(H) бесконечен, конечно порождена. Группа G, удовлетворяющая заданным условиям, называется AFF-группой. Доказано, что локально разрешимая AFF-группа гиперабелева. Описана структура AFF-группы G в случае, когда G — конечно порожденная разрешимая группа и R-модуль A/CA(G) бесконечен. Дослiджено RG-модуль A такий, що R — асоцiативне кiльце, CG(A) = 1, та кожна власна пiдгрупа H групи G, для якої R-модуль A/CA(H) є нескiнченним, скiнченно породжена. Група G, яка задовольняє цi умови, називається AFF-групою. Доведено, що локально розв’язна AFF-група є гiперабелевою. Описано структуру AFF-групи G у випадку, коли G є скiнченно породженою розв’язною групою та R-модуль A/CA(G) є нескiнченним. We study an RG-module A such that R is an associative ring, CG(A) = 1, and each proper subgroup H of G with infinite A/CA(H) is finitely generated. The group G under consideration is called an AFF-group. It is proved that a locally soluble AFF-group is hyper-Abelian. We describe the structure of an AFF-group G such that G is a finitely generated soluble group, and R–module A/CA(G) is infinite. 2013 Article Обобщенно разрешимые AFF-группы / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 10. — С. 18–22. — Бібліогр.: 9 назв. — рос. 1025-6415 http://dspace.nbuv.gov.ua/handle/123456789/86180 512.544 ru Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Математика Математика |
spellingShingle |
Математика Математика Дашкова, О.Ю. Обобщенно разрешимые AFF-группы Доповіді НАН України |
description |
Изучен RG-модуль A такой, что R — ассоциативное кольцо, CG(A) = 1, и любая собственная подгруппа H группы G, для которой R-модуль A/CA(H) бесконечен, конечно
порождена. Группа G, удовлетворяющая заданным условиям, называется AFF-группой. Доказано, что локально разрешимая AFF-группа гиперабелева. Описана структура
AFF-группы G в случае, когда G — конечно порожденная разрешимая группа и R-модуль A/CA(G) бесконечен. |
format |
Article |
author |
Дашкова, О.Ю. |
author_facet |
Дашкова, О.Ю. |
author_sort |
Дашкова, О.Ю. |
title |
Обобщенно разрешимые AFF-группы |
title_short |
Обобщенно разрешимые AFF-группы |
title_full |
Обобщенно разрешимые AFF-группы |
title_fullStr |
Обобщенно разрешимые AFF-группы |
title_full_unstemmed |
Обобщенно разрешимые AFF-группы |
title_sort |
обобщенно разрешимые aff-группы |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2013 |
topic_facet |
Математика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/86180 |
citation_txt |
Обобщенно разрешимые AFF-группы / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 10. — С. 18–22. — Бібліогр.: 9 назв. — рос. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT daškovaoû obobŝennorazrešimyeaffgruppy |
first_indexed |
2023-10-18T19:32:48Z |
last_indexed |
2023-10-18T19:32:48Z |
_version_ |
1796147256326356992 |