Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду

Розглядається метод, в якому несиметричні граничні умови шляхом заміни змінних зводяться до симетричних та використовується спосіб апроксимації розв’язку нестаціонарної крайової задачі теплопровідності із симетричними граничними умовами інтерполяційним поліномом Лагранжа за трьома опорними точками п...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Махович, О.І., Федорчук, В.А.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/86569
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду / О.І. Махович, В.А. Федорчук // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2014. — Вип. 11. — С. 143-151. — Бібліогр.: 6 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглядається метод, в якому несиметричні граничні умови шляхом заміни змінних зводяться до симетричних та використовується спосіб апроксимації розв’язку нестаціонарної крайової задачі теплопровідності із симетричними граничними умовами інтерполяційним поліномом Лагранжа за трьома опорними точками просторової координати. Наближений розв’язок у двох із цих точок знаходиться як розв’язок системи диференціальних рівнянь, а третя точка вибирається на границі об’єкта і як значення використовується відповідна гранична умова. Застосовані прийоми дали змогу істотно спростити обчислювальний алгоритм за умови забезпечення прийнятної точності розв’язку.