Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду

Розглядається метод, в якому несиметричні граничні умови шляхом заміни змінних зводяться до симетричних та використовується спосіб апроксимації розв’язку нестаціонарної крайової задачі теплопровідності із симетричними граничними умовами інтерполяційним поліномом Лагранжа за трьома опорними точками п...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Махович, О.І., Федорчук, В.А.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/86569
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду / О.І. Махович, В.А. Федорчук // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2014. — Вип. 11. — С. 143-151. — Бібліогр.: 6 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-86569
record_format dspace
spelling irk-123456789-865692018-06-10T15:31:30Z Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду Махович, О.І. Федорчук, В.А. Розглядається метод, в якому несиметричні граничні умови шляхом заміни змінних зводяться до симетричних та використовується спосіб апроксимації розв’язку нестаціонарної крайової задачі теплопровідності із симетричними граничними умовами інтерполяційним поліномом Лагранжа за трьома опорними точками просторової координати. Наближений розв’язок у двох із цих точок знаходиться як розв’язок системи диференціальних рівнянь, а третя точка вибирається на границі об’єкта і як значення використовується відповідна гранична умова. Застосовані прийоми дали змогу істотно спростити обчислювальний алгоритм за умови забезпечення прийнятної точності розв’язку. The article deals with the method in which asymmetric boundary conditions are reduced to symmetric by replacing the variables. Approximation method of solution of non-stationary boundary heat conduction problem with symmetric boundary conditions by Lagrange polynomial interpolation in three spatial coordinates of the reference points is used. Approximate solution of two of these points is a solution of differential equations, and the third point on the boundary of the object is selected and corresponding boundary condition is used as the value. The applied methods have enabled to simplify computing algorithm provided that acceptable accuracy of solution. 2014 Article Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду / О.І. Махович, В.А. Федорчук // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2014. — Вип. 11. — С. 143-151. — Бібліогр.: 6 назв. — укр. 2308-5878 http://dspace.nbuv.gov.ua/handle/123456789/86569 004.942 uk Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
description Розглядається метод, в якому несиметричні граничні умови шляхом заміни змінних зводяться до симетричних та використовується спосіб апроксимації розв’язку нестаціонарної крайової задачі теплопровідності із симетричними граничними умовами інтерполяційним поліномом Лагранжа за трьома опорними точками просторової координати. Наближений розв’язок у двох із цих точок знаходиться як розв’язок системи диференціальних рівнянь, а третя точка вибирається на границі об’єкта і як значення використовується відповідна гранична умова. Застосовані прийоми дали змогу істотно спростити обчислювальний алгоритм за умови забезпечення прийнятної точності розв’язку.
format Article
author Махович, О.І.
Федорчук, В.А.
spellingShingle Махович, О.І.
Федорчук, В.А.
Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Махович, О.І.
Федорчук, В.А.
author_sort Махович, О.І.
title Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду
title_short Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду
title_full Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду
title_fullStr Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду
title_full_unstemmed Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду
title_sort моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/86569
citation_txt Моделювання нестаціонарного теплового процесу в необмеженому порожнистому циліндрі з несиметричними граничними умовами першого роду / О.І. Махович, В.А. Федорчук // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2014. — Вип. 11. — С. 143-151. — Бібліогр.: 6 назв. — укр.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT mahovičoí modelûvannânestacíonarnogoteplovogoprocesuvneobmeženomuporožnistomucilíndríznesimetričnimigraničnimiumovamiperšogorodu
AT fedorčukva modelûvannânestacíonarnogoteplovogoprocesuvneobmeženomuporožnistomucilíndríznesimetričnimigraničnimiumovamiperšogorodu
first_indexed 2023-10-18T19:33:39Z
last_indexed 2023-10-18T19:33:39Z
_version_ 1796147294333042688