Лінійно-квадратична задача оптимального керування процесом теплопровідності
Розглядається проблема мiнiмiзацiї квадратичного функцiонала на розв’язках другої крайової задачi для рiвняння теплопровiдностi. Для дослiдження сформульованої задачi оптимiзацiї застосовано метод множникiв Лагранжа. Такий пiдхiд дав можливiсть отримати необхiднi умови оптимальностi. На основi цих...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2014
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/86969 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Лінійно-квадратична задача оптимального керування процесом теплопровідності / М.М. Копець // Доповiдi Нацiональної академiї наук України. — 2014. — № 2. — С. 45-49. — Бібліогр.: 5 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Розглядається проблема мiнiмiзацiї квадратичного функцiонала на розв’язках другої крайової задачi для рiвняння теплопровiдностi. Для дослiдження сформульованої задачi
оптимiзацiї застосовано метод множникiв Лагранжа. Такий пiдхiд дав можливiсть
отримати необхiднi умови оптимальностi. На основi цих умов виведено iнтегро-диференцiальне рiвняння Рiккатi з частинними похiдними. Розв’язок цього рiвняння подано в замкненiй формi. |
---|