Лінійно-квадратична задача оптимального керування процесом теплопровідності
Розглядається проблема мiнiмiзацiї квадратичного функцiонала на розв’язках другої крайової задачi для рiвняння теплопровiдностi. Для дослiдження сформульованої задачi оптимiзацiї застосовано метод множникiв Лагранжа. Такий пiдхiд дав можливiсть отримати необхiднi умови оптимальностi. На основi цих...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2014
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/86969 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Лінійно-квадратична задача оптимального керування процесом теплопровідності / М.М. Копець // Доповiдi Нацiональної академiї наук України. — 2014. — № 2. — С. 45-49. — Бібліогр.: 5 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-86969 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-869692015-10-08T03:02:18Z Лінійно-квадратична задача оптимального керування процесом теплопровідності Копець, М.М. Інформатика та кібернетика Розглядається проблема мiнiмiзацiї квадратичного функцiонала на розв’язках другої крайової задачi для рiвняння теплопровiдностi. Для дослiдження сформульованої задачi оптимiзацiї застосовано метод множникiв Лагранжа. Такий пiдхiд дав можливiсть отримати необхiднi умови оптимальностi. На основi цих умов виведено iнтегро-диференцiальне рiвняння Рiккатi з частинними похiдними. Розв’язок цього рiвняння подано в замкненiй формi. Рассматривается проблема минимизации квадратичного функционала на решениях второй краевой задачи для уравнения теплопроводности. Для исследования сформулированной задачи оптимизации применен метод множителей Лагранжа. Такой подход дал возможность получить необходимые условия оптимальности. На основе этих условий выведено интегро-дифференциальное уравнение Риккати с частными производными. Решение этого уравнения представлено в замкнутой форме. The problem of minimization of a quadratic functional on solutions of the second boundary-value problem for the heat equation is considered. The method of Lagrange multipliers is applied to research the formulated optimization problem. Such approach has given a chance to obtain the necessary conditions of optimality. On the basis of these conditions, the integro-differential Riccati equation with partial derivatives is deduced. The solution of this equation is presented in the closed form. 2014 Article Лінійно-квадратична задача оптимального керування процесом теплопровідності / М.М. Копець // Доповiдi Нацiональної академiї наук України. — 2014. — № 2. — С. 45-49. — Бібліогр.: 5 назв. — укр. 1025-6415 http://dspace.nbuv.gov.ua/handle/123456789/86969 517.977.56 uk Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
topic |
Інформатика та кібернетика Інформатика та кібернетика |
spellingShingle |
Інформатика та кібернетика Інформатика та кібернетика Копець, М.М. Лінійно-квадратична задача оптимального керування процесом теплопровідності Доповіді НАН України |
description |
Розглядається проблема мiнiмiзацiї квадратичного функцiонала на розв’язках другої крайової задачi для рiвняння теплопровiдностi. Для дослiдження сформульованої задачi
оптимiзацiї застосовано метод множникiв Лагранжа. Такий пiдхiд дав можливiсть
отримати необхiднi умови оптимальностi. На основi цих умов виведено iнтегро-диференцiальне рiвняння Рiккатi з частинними похiдними. Розв’язок цього рiвняння подано в замкненiй формi. |
format |
Article |
author |
Копець, М.М. |
author_facet |
Копець, М.М. |
author_sort |
Копець, М.М. |
title |
Лінійно-квадратична задача оптимального керування процесом теплопровідності |
title_short |
Лінійно-квадратична задача оптимального керування процесом теплопровідності |
title_full |
Лінійно-квадратична задача оптимального керування процесом теплопровідності |
title_fullStr |
Лінійно-квадратична задача оптимального керування процесом теплопровідності |
title_full_unstemmed |
Лінійно-квадратична задача оптимального керування процесом теплопровідності |
title_sort |
лінійно-квадратична задача оптимального керування процесом теплопровідності |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2014 |
topic_facet |
Інформатика та кібернетика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/86969 |
citation_txt |
Лінійно-квадратична задача оптимального керування процесом теплопровідності / М.М. Копець // Доповiдi Нацiональної академiї наук України. — 2014. — № 2. — С. 45-49. — Бібліогр.: 5 назв. — укр. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT kopecʹmm líníjnokvadratičnazadačaoptimalʹnogokeruvannâprocesomteploprovídností |
first_indexed |
2023-10-18T19:34:34Z |
last_indexed |
2023-10-18T19:34:34Z |
_version_ |
1796147335295664128 |