Изгибные колебания упругих прямоугольных пластин со свободными краями: от Хладни (1809) и Ритца (1909) до наших дней
Рассмотрена классическая задача о колебаниях пластины со свободными краями. На основе метода суперпозиции ее решение сведено к однородной квазирегулярной бесконечной системе линейных алгебраических уравнений. С помощью достаточного условия существования ограниченного решения для квазирегулярной сист...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут гідромеханіки НАН України
2009
|
Назва видання: | Акустичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/87291 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Изгибные колебания упругих прямоугольных пластин со свободными краями: от Хладни (1809) и Ритца (1909) до наших дней / В.В. Мелешко, С.О. Папков // Акустичний вісник — 2009. —Т. 12, № 4. — С. 34-51. — Бібліогр.: 33 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассмотрена классическая задача о колебаниях пластины со свободными краями. На основе метода суперпозиции ее решение сведено к однородной квазирегулярной бесконечной системе линейных алгебраических уравнений. С помощью достаточного условия существования ограниченного решения для квазирегулярной системы найдены собственные частоты колебаний пластины. Для них на основе анализа асимптотического поведения неизвестных построены нетривиальные решения системы, позволяющие получить аналитические представления собственных форм колебаний. Исследована точность выполнения однородных граничных условий, проведено сравнение теоретических данных с экспериментальными. |
---|