О движении точки, стесненной плоской симметричной связью
На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут механіки ім. С.П. Тимошенка НАН України
2013
|
Назва видання: | Прикладная механика |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/87803 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О движении точки, стесненной плоской симметричной связью / Н.П. Плахтиенко // Прикладная механика. — 2013. — Т. 49, № 5. — С. 122-138. — Бібліогр.: 13 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від класичних тригонометричних знаком кривизни в кожній точці її існування. Обчислено асимптотичні 2³ періодичні процеси і застосовано в задачі про рух матеріальної точки по замкнутій плоско-ребристій поверхні. Вказано спосіб побудови неперервних еволюційних процесів гіперболічного типу, аргументами яких є довжини дуг розімкнених ліній з парою осей симетрії. Встановлено зв'язок диференціала дуги плоскої кривої з лагранжіаном простої динамічної системи ненатурального типу. Побудовано нелінійну динамічну систему другого порядку, частинними розв'язками якої можуть бути Т-періодичні або еволюційні процеси гіперболічного типу, що залежать від початкових значень. |
---|