Мультипликаторы Фурье в пространствах с частичным свойством Гельдера и их применение к оценкам Шаудера
Приведены сравнительно простые достаточные условия на мультипликатор Фурье для того, чтобы он отображал функции, удовлетворяющие условию Гельдера по части переменных в функции, удовлетворяющей условию Гельдера по всем переменным. С использованием этих достаточных условий доказана разрешимость в кла...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2014
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/87808 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Мультипликаторы Фурье в пространствах с частичным свойством Гельдера и их применение к оценкам Шаудера / С.П. Дегтярев // Доповiдi Нацiональної академiї наук України. — 2014. — № 6. — С. 17-22. — Бібліогр.: 2 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Приведены сравнительно простые достаточные условия на мультипликатор Фурье для
того, чтобы он отображал функции, удовлетворяющие условию Гельдера по части переменных в функции, удовлетворяющей условию Гельдера по всем переменным. С использованием этих достаточных условий доказана разрешимость в классах Гельдера начально-краевых задач для линеаризованного уравнения Кана–Хилларда с динамическими граничными условиями двух типов. Получены оценки Шаудера решений указанных задач. |
---|