2025-02-23T03:45:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-88228%22&qt=morelikethis&rows=5
2025-02-23T03:45:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-88228%22&qt=morelikethis&rows=5
2025-02-23T03:45:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:45:16-05:00 DEBUG: Deserialized SOLR response
The interaction of two dust particles in plasmas
The process of charging and shielding of two dust particles is studied with a molecular dynamic method and Monte Carlo method for describing of elementary processes, such as elastic, excitation, ionization, charge exchange processes.The three-dimensional P3M molecular dynamics method [1] is applie...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
Series: | Вопросы атомной науки и техники |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/88228 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The process of charging and shielding of two dust particles is studied with a molecular dynamic method and
Monte Carlo method for describing of elementary processes, such as elastic, excitation, ionization, charge exchange
processes.The three-dimensional P3M molecular dynamics method [1] is applied as the most complete description of
plasma particles motion and interaction with macroscopic dust grain. The interaction between plasma particles and
neutral gas was simulated using MCC method. The two spherical conductive dust particles were located in nondisturbed
low pressure low temperature plasma at different values of the neutral gas density. The spatial distribution of plasma
particles around dust grains obtained at different interparticle distances. The formation of the common ion cloud and the
effect of ion shadowing were observed at the decreasing of the interparticle distance. The dependence of the
electrostatic and ion drag forces on the interparticle distance was investigated. |
---|