Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
A problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media, is solved. The initial problem is reduced to an isotropic one by the change of variables. First of all, the problem for small inhomogeneity is considered. Its solution is obtained by the iteration m...
Збережено в:
Дата: | 2002 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут гідромеханіки НАН України
2002
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/931 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media / A. G. Bagdoev, S. G. Sahakyan // Акуст. вісн. — 2002. — Т. 5, N 4. — С. 61-71. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media, is solved. The initial problem is reduced to an isotropic one by the change of variables. First of all, the problem for small inhomogeneity is considered. Its solution is obtained by the iteration method and is expressed by quadratures from the solution of the homogeneous case. The stresses outside the crack and displacements on its faces are obtained. Besides, the solution for an arbitrary value of the inhomogeneity parameter is obtained. It is shown that its first order approximation coincides with the solution obtained by the method of small parameter. |
---|