An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending
A linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the geometry of the structure an...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут механіки ім. С.П. Тимошенка НАН України
2010
|
Назва видання: | Прикладная механика |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/95414 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending / A. Hamdouni, O. Millet // Прикладная механика. — 2010. — Т. 46, № 9. — С. 123-143. — Бібліогр.: 48 назв. — анг. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A linear one-dimensional model for thin-walled rods with open strongly
curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the
linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the
geometry of the structure and the level of applied forces. For a given force level, the order of
magnitude of the displacements and the corresponding one-dimensional model are deduced by
asymptotic expansions. In the case of low force levels, we obtain a one dimensional model whose
kinematics, traction and twist equations correspond to Vlassov ones. However this model couples
twist and bending effects in the bending equations, at the difference from Vlassov model where the
twist angle and the bending
displacement are uncoupled. |
---|