An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending

A linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the geometry of the structure an...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Hamdouni, A., Millet, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут механіки ім. С.П. Тимошенка НАН України 2010
Назва видання:Прикладная механика
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/95414
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending / A. Hamdouni, O. Millet // Прикладная механика. — 2010. — Т. 46, № 9. — С. 123-143. — Бібліогр.: 48 назв. — анг.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the geometry of the structure and the level of applied forces. For a given force level, the order of magnitude of the displacements and the corresponding one-dimensional model are deduced by asymptotic expansions. In the case of low force levels, we obtain a one dimensional model whose kinematics, traction and twist equations correspond to Vlassov ones. However this model couples twist and bending effects in the bending equations, at the difference from Vlassov model where the twist angle and the bending displacement are uncoupled.