О нелинейных колебаниях плавающей упругой пластинки
By the multi-scale method, the equations for three nonlinear approximations of bending-gravitational oscillations of thin elastic plate are obtained. The plate is floating over the surface of homogeneous ideal non-compressive fluid of finite depth. The equations take into account the compression f...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут механіки ім. С.П. Тимошенка НАН України
2010
|
Назва видання: | Прикладная механика |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/95450 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О нелинейных колебаниях плавающей упругой пластинки / А.Е. Букатов, А.А. Букатов // Прикладная механика. — 2010. — Т. 46, № 10. — С. 62-70. — Бібліогр.: 14 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | By the multi-scale method, the equations for three nonlinear approximations of bending-gravitational oscillations of thin elastic plate are obtained. The plate is floating over the surface of homogeneous ideal non-compressive fluid of finite depth. The equations take
into account the compression force and nonlinearity of acceleration of plate vertical shears, when the plate being bent. Basing on the equations, the asymptotic expansions are built up to the third degree of smallness for the plate bending and the potential of fluid motion, which are initiated by the running periodic wave of finite amplitude. A dependence of oscillation characteristics on the plate elastic modulus and thickness, shear force, the initial
wave length and steepness is considered. |
---|