О динамике упругого усеченного конуса
The problem of determination of non-stationary wave field of an elastic truncated cone is formulated in terms of wave functions with allowance for the cone weight. By application of integral Laplace transform in time and transformation by the polar angle, the problem is reduced to solving the one...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут механіки ім. С.П. Тимошенка НАН України
2010
|
Назва видання: | Прикладная механика |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/95453 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О динамике упругого усеченного конуса / Б. Кебли, Г.Я. Попов, Н.Д. Вайсфельд // Прикладная механика. — 2010. — Т. 46, № 11. — С. 84-92. — Бібліогр.: 15 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The problem of determination of non-stationary wave field of an elastic truncated
cone is formulated in terms of wave functions with allowance for the cone weight. By
application of integral Laplace transform in time and transformation by the polar angle, the
problem is reduced to solving the one-dimensional vector problem in the transform space.
The transforms of wave functions are expanded into series of inverse degrees of Laplace
transform parameter, what enables to study the wave process at the initial moments of interaction.
The way is proposed to solve the problem in hand for the case of twice truncated
over the spherical surfaces elastic cone. |
---|