On Stability of Parametrically Excited Linear Stochastic Systems.
The dynamic stability of a coupled two-degrees-of-freedom system subjected to parametric excitation by a harmonic action superimposed by an ergodic stochastic process is investigated. For the stability analysis, the method of moment functions is used. Explicit expressions for the stability of the...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут механіки ім. С.П. Тимошенка НАН України
2010
|
Назва видання: | Прикладная механика |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/95495 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Stability of Parametrically Excited Linear Stochastic Systems / M. Labou // Прикладная механика. — 2010. — Т. 46, № 12. — С. 123-138. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The dynamic stability of a coupled two-degrees-of-freedom system subjected
to parametric excitation by a harmonic action superimposed by an ergodic stochastic process
is investigated. For the stability analysis, the method of moment functions is used. Explicit
expressions for the stability of the second moments are obtained when the frequency of the
harmonic excitation lies in the vicinity of the combination sum of the natural frequencies.
Good agreement between the analytical and numerical results is obtained. As an application,
the example of the flexural-torsional instability of a thin elastic beam under dynamic loading
is considered. |
---|