Повышение усталостного ресурса силумина электронно-пучковой обработкой
В настоящее время в различных отраслях промышленности всё большую популярность приобретают изделия из алюминиевых сплавов. Однако сравнительно низкие прочностные свойства силумина существенно сужают сферу его применения. Силумины практически не упрочняются термической обработкой из-за малого различи...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2015
|
Назва видання: | Успехи физики металлов |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/98498 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Повышение усталостного ресурса силумина электронно-пучковой обработкой / В.Е. Громов, К.В. Аксёнова, С.В. Коновалов, Ю.Ф. Иванов // Успехи физики металлов. — 2015. — Т. 16, № 4. — С. 265-297. — Бібліогр.: 50 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В настоящее время в различных отраслях промышленности всё большую популярность приобретают изделия из алюминиевых сплавов. Однако сравнительно низкие прочностные свойства силумина существенно сужают сферу его применения. Силумины практически не упрочняются термической обработкой из-за малого различия по растворимости кремния при высокой и низкой температуре. Поэтому важнейшим методом улучшения их механических свойств является модифицирование. Осуществлена обработка силумина эвтектического состава высокоинтенсивным импульсным электронным пучком в различных режимах. Выполнены многоцикловые усталостные испытания и выявлен режим облучения, позволивший повысить усталостную долговечность материала более чем в 3,5 раза. Методами сканирующей и просвечивающей электронной дифракционной микроскопии проведены исследования структурно-фазовых состояний и дефектной субструктуры силумина, подвергнутого усталостным многоцикловым испытаниям до разрушения. Показано, что в режиме частичного оплавления поверхности облучения процесс модификации поверхности сопровождается формированием многочисленных микропор, расположенных вдоль границы раздела пластина–матрица, и микротрещин, расположенных в пластинах кремния. В режиме устойчивого плавления (толщина расплавленного слоя изменяется в пределах до 20 мкм) формируется мультимодальная структура (зёрна размерами 30–50 мкм с расположенными на границах частицами кремния размерами до 10 мкм; субзёренная структура в виде ячеек кристаллизации размерами от 100 нм до 250 нм). Выявлено, что источниками усталостных микротрещин являются пластины кремния микронных и субмикронных размеров, не растворившиеся при электронно-пучковой обработке. Обсуждены возможные причины повышения усталостного ресурса силумина электронно-пучковой обработкой. Показано, что основными причинами увеличения усталостной долговечности силумина являются: значительное увеличение критической длины трещины, коэффициента безопасности, снижение среднего расстояния между усталостными бороздками (пробег трещины за цикл нагружения), формирование мультимодальной многофазной субмикро- и наноразмерной структуры. Изучены трибологические и прочностные свойства поверхности силумина после электронно-пучковой обработки и усталостных испытаний и выявлено снижение твёрдости, увеличение скорости изнашивания и коэффициента трения с ростом числа циклов до разрушения. Обсуждены возможные причины снижения прочностных и трибологических свойств поверхностных слоёв силумина. |
---|