Структура розв’язкiв диференцiальних рiвнянь у банаховому просторi на нескiнченному iнтервалi
Описано всi розв’язки рiвняння вигляду (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на пiвосi або на всiй числовiй осi, де A — iнфiнiтезимальний генератор обмеженої аналiтичної C₀-пiвгрупи лiнiйних операторiв у банаховому просторi. Показано, що будь-який розв’язок розглянутого рi...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2016
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/98998 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Структура розв’язкiв диференцiальних рiвнянь у банаховому просторi на нескiнченному iнтервалi / В.М. Горбачук // Доповiдi Нацiональної академiї наук України. — 2016. — № 2. — С. 7-12. — Бібліогр.: 6 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Описано всi розв’язки рiвняння вигляду (d/dt − A)^n(d/dt + A)^m y(t) = 0 (n,m ∈ N₀ = {0}∪N, n + m ≥ 1) на пiвосi або на всiй числовiй осi, де A — iнфiнiтезимальний
генератор обмеженої аналiтичної C₀-пiвгрупи лiнiйних операторiв у банаховому просторi. Показано, що будь-який розв’язок розглянутого рiвняння на (0,∞) є аналiтичною
вектор-функцiєю на цьому промiжку, а кожен його розв’язок на (−∞,∞) допускає продовження до цiлої вектор-функцiї. В обох випадках для розв’якiв встановлено аналог
принципу Фрагмена–Лiндельофа. |
---|