О задаче Римана–Гильберта для аналитических функций в круговых областях
Доказано существование однозначных аналитических решений в единичном круге и многозначных аналитических решений в областях, ограниченных конечным числом окружностей, задачи Римана–Гильберта с коэффициентами счетно-ограниченной вариации и граничными данными, измеримыми относительно логарифмической ем...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2016
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/98999 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О задаче Римана–Гильберта для аналитических функций в круговых областях / А.С. Ефимушкин, В.И. Рязанов // Доповiдi Нацiональної академiї наук України. — 2016. — № 2. — С. 13-16. — Бібліогр.: 10 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Доказано существование однозначных аналитических решений в единичном круге и многозначных аналитических решений в областях, ограниченных конечным числом окружностей, задачи Римана–Гильберта с коэффициентами счетно-ограниченной вариации и граничными данными, измеримыми относительно логарифмической емкости. Показано, что пространства решений имеют бесконечную размерность. |
---|