Метод локализации точки экстремума унимодальной функции

Рассмотрена комбинация численных методов типа Regula falsi и секущих для прямого поиска экстремума унимодальной функции общего вида на заданном отрезке. Предложенная комбинация не требует какого-либо предварительного анализа характера функции для начала поиска ее экстремума. Реализуется своеобразный...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Шелудько, Г.А., Угримов, С.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2016
Назва видання:Проблемы машиностроения
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/99260
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Метод локализации точки экстремума унимодальной функции / Г.А. Шелудько, С.В. Угримов // Проблемы машиностроения. — 2016. — Т. 19, № 1. — С. 44-53. — Бібліогр.: 18 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Рассмотрена комбинация численных методов типа Regula falsi и секущих для прямого поиска экстремума унимодальной функции общего вида на заданном отрезке. Предложенная комбинация не требует какого-либо предварительного анализа характера функции для начала поиска ее экстремума. Реализуется своеобразный метод с минимальной глубиной памяти в направлении поиска. Он является универсальным и независимым от класса минимизируемой функции. Принятый апостериорный подход позволяет отыскивать экстремум недифференцируемых, в том числе алгоритмически заданных функций. Метод отличается большой общностью. Он обеспечивает гарантированную сходимость к экстремальной точке благодаря использованию средневзвешенного способа реализации решения. Если даже минимизируемая функция на заданном отрезке оказывается не унимодальной, то всегда предлагаемый метод осуществляет получение хотя бы относительного минимума. Изложенная методика может быть легко распространена на многомерный случай.Проведен массовый вычислительный эксперимент на гладких и негладких функциях. Рассмотрено применение предложенного метода к выпукло-вогнутым с разрывом первого рода функциям, к разнонаклоненным функциям, а также эмпирически заданным функциям сложной геометрии. Показано, что индекс эффективности комбинации методов превышает таковой у отдельно взятых методов с теми же начальными условиями.